Search results
Results from the WOW.Com Content Network
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Another example is the Born (ionic) model of the ionic lattice. The first term in the next equation is Coulomb's law for a pair of ions, the second term is the short-range repulsion explained by Pauli's exclusion principle and the final term is the dispersion interaction term. Usually, a simulation only includes the dipolar term, although ...
In chemistry, a dynamic equilibrium exists once a reversible reaction occurs. Substances transition between the reactants and products at equal rates, meaning there is no net change. Reactants and products are formed at such a rate that the concentration of neither changes. It is a particular example of a system in a steady state.
Transport phenomena have wide application. For example, in solid state physics, the motion and interaction of electrons, holes and phonons are studied under "transport phenomena". Another example is in biomedical engineering, where some transport phenomena of interest are thermoregulation, perfusion, and microfluidics.
where is a diffusion matrix specifying hydrodynamic interactions, Oseen tensor [4] for example, in non-diagonal entries interacting between the target particle and the surrounding particle , is the force exerted on the particle , and () is a Gaussian noise vector with zero mean and a standard deviation of in each vector entry.
At appreciable temperatures, many of these new motional modes are excited, resulting in constant motion as seen above. Molecular physics is the study of the physical properties of molecules and molecular dynamics. The field overlaps significantly with physical chemistry, chemical physics, and quantum chemistry.
The configuration space and the phase space of the dynamical system both are Euclidean spaces, i. e. they are equipped with a Euclidean structure.The Euclidean structure of them is defined so that the kinetic energy of the single multidimensional particle with the unit mass = is equal to the sum of kinetic energies of the three-dimensional particles with the masses , …,:
In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time. [3] More specifically, the equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables.