enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Joule–Thomson effect - Wikipedia

    en.wikipedia.org/wiki/JouleThomson_effect

    In thermodynamics, the JouleThomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.

  3. Inversion temperature - Wikipedia

    en.wikipedia.org/wiki/Inversion_temperature

    This temperature change is known as the JouleThomson effect, and is exploited in the liquefaction of gases. Inversion temperature depends on the nature of the gas. For a van der Waals gas we can calculate the enthalpy using statistical mechanics as

  4. Thermoelectric effect - Wikipedia

    en.wikipedia.org/wiki/Thermoelectric_effect

    This Thomson effect was predicted and later observed in 1851 by Lord Kelvin (William Thomson). [9] It describes the heating or cooling of a current-carrying conductor with a temperature gradient. If a current density J {\displaystyle \mathbf {J} } is passed through a homogeneous conductor, the Thomson effect predicts a heat production rate per ...

  5. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    For real gasses, the molecules do interact via attraction or repulsion depending on temperature and pressure, and heating or cooling does occur. This is known as the JouleThomson effect. For reference, the JouleThomson coefficient μ JT for air at room temperature and sea level is 0.22 °C/bar. [7]

  6. Joule effect - Wikipedia

    en.wikipedia.org/wiki/Joule_effect

    The JouleThomson effect, the temperature change of a gas when it is forced through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment. The Gough–Joule effect or the Gow–Joule effect, which is the tendency of elastomers to contract if heated while they are under tension.

  7. Hampson–Linde cycle - Wikipedia

    en.wikipedia.org/wiki/Hampson–Linde_cycle

    Whereas the Siemens cycle has the gas do external work to reduce its temperature, the Hampson–Linde cycle relies solely on the JouleThomson effect; this has the advantage that the cold side of the cooling apparatus needs no moving parts. [1]

  8. Real gas - Wikipedia

    en.wikipedia.org/wiki/Real_gas

    On the other hand, real-gas models have to be used near the condensation point of gases, near critical points, at very high pressures, to explain the JouleThomson effect, and in other less usual cases. The deviation from ideality can be described by the compressibility factor Z.

  9. Thermoelectric materials - Wikipedia

    en.wikipedia.org/wiki/Thermoelectric_materials

    The efficiency of a thermoelectric device for electricity generation is given by , defined as =.. The maximum efficiency of a thermoelectric device is typically described in terms of its device figure of merit where the maximum device efficiency is approximately given by [7] = + ¯ + ¯ +, where is the fixed temperature at the hot junction, is the fixed temperature at the surface being cooled ...