Search results
Results from the WOW.Com Content Network
In graph theory, an Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once (allowing for revisiting vertices). Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail that starts and ends on the same vertex .
Let G = (V, E) be a directed graph. An Eulerian circuit is a directed closed trail that visits each edge exactly once. In 1736, Euler showed that G has an Eulerian circuit if and only if G is connected and the indegree is equal to outdegree at every vertex. In this case G is called Eulerian.
Euler's argument shows that a necessary condition for the walk of the desired form is that the graph be connected and have exactly zero or two nodes of odd degree. This condition turns out also to be sufficient—a result stated by Euler and later proved by Carl Hierholzer. Such a walk is now called an Eulerian path or Euler walk in his honor ...
In either case, the resulting closed trail is known as an Eulerian trail. If a finite undirected graph has even degree at each of its vertices, regardless of whether it is connected, then it is possible to find a set of simple cycles that together cover each edge exactly once: this is Veblen's theorem. [7]
An Eulerian path is a walk that uses every edge of a graph exactly once. An Eulerian circuit (also called an Eulerian cycle or an Euler tour) is a closed walk that uses every edge exactly once. An Eulerian graph is a graph that has an Eulerian circuit. For an undirected graph, this means that the graph is connected and every vertex has even degree.
The Euler tour technique (ETT), named after Leonhard Euler, is a method in graph theory for representing trees. The tree is viewed as a directed graph that contains two directed edges for each edge in the tree. The tree can then be represented as a Eulerian circuit of the directed graph, known as the Euler tour representation (ETR) of the tree
Get breaking news and the latest headlines on business, entertainment, politics, world news, tech, sports, videos and much more from AOL
In order to prove this generalized form of the theorem, Petersen first proved that a 4-regular graph can be factorized into two 2-factors by taking alternate edges in a Eulerian trail. He noted that the same technique used for the 4-regular graph yields a factorization of a -regular graph into two -factors. [2]