Search results
Results from the WOW.Com Content Network
An Eulerian trail, [note 1] or Euler walk, in an undirected graph is a walk that uses each edge exactly once. If such a walk exists, the graph is called traversable or semi-eulerian. [3] An Eulerian cycle, [note 1] also called an Eulerian circuit or Euler tour, in an undirected graph is a cycle that uses each edge exactly once
An Eulerian circuit is a directed closed trail that visits each edge exactly once. In 1736, Euler showed that G has an Eulerian circuit if and only if G is connected and the indegree is equal to outdegree at every vertex. In this case G is called Eulerian. We denote the indegree of a vertex v by deg(v).
The tree can then be represented as a Eulerian circuit of the directed graph, known as the Euler tour representation (ETR) of the tree. The ETT allows for efficient, parallel computation of solutions to common problems in algorithmic graph theory. It was introduced by Tarjan and Vishkin in 1984. [1]
A directed circuit is a non-empty directed trail (e 1, e 2, ..., e n) with a vertex sequence (v 1, v 2, ..., v n, v 1). A directed cycle or simple directed circuit is a directed circuit in which only the first and last vertices are equal. [1] n is called the length of the directed circuit resp. length of the directed cycle.
After corresponding edges are added (red), the length of the Eulerian circuit is found. In graph theory and combinatorial optimization , Guan's route problem , the Chinese postman problem , postman tour or route inspection problem is to find a shortest closed path or circuit that visits every edge of an (connected) undirected graph at least once.
A trail is a walk in which all edges are distinct. [2] A path is a trail in which all vertices (and therefore also all edges) are distinct. [2] If w = (e 1, e 2, …, e n − 1) is a finite walk with vertex sequence (v 1, v 2, …, v n) then w is said to be a walk from v 1 to v n. Similarly for a trail or a path.
An inflation report in the coming week will test the strength of the record-setting U.S. stocks rally and provide a crucial piece of data that could factor into the Federal Reserve's plans for ...
Since the graph corresponding to historical Königsberg has four nodes of odd degree, it cannot have an Eulerian path. An alternative form of the problem asks for a path that traverses all bridges and also has the same starting and ending point. Such a walk is called an Eulerian circuit or an Euler tour. Such a circuit exists if, and only if ...