Search results
Results from the WOW.Com Content Network
where resistance in ohms and capacitance in farads yields the time constant in seconds or the cutoff frequency in hertz (Hz). The cutoff frequency when expressed as an angular frequency ( ω c = 2 π f c ) {\displaystyle (\omega _{c}{=}2\pi f_{c})} is simply the reciprocal of the time constant.
In order to increase accuracy (and decrease speed), the most common methods are: Lumped C. The entire wire capacitance is applied to the gate output, and the delay through the wire itself is ignored. Elmore delay [5] is a simple approximation, often used where speed of calculation is important but the delay through the wire itself cannot be ...
Stray capacitance can allow signals to leak between otherwise isolated circuits (an effect called crosstalk), and it can be a limiting factor for proper functioning of circuits at high frequency. Stray capacitance between the input and output in amplifier circuits can be troublesome because it can form a path for feedback, which can cause ...
In the frequency domain (for example, looking at the Fourier transform of the step response, or using an input that is a simple sinusoidal function of time) the time constant also determines the bandwidth of a first-order time-invariant system, that is, the frequency at which the output signal power drops to half the value it has at low ...
An indirect technique to calculate ε r is conversion of radio frequency S-parameter measurement results. A description of frequently used S-parameter conversions for determination of the frequency-dependent ε r of dielectrics can be found in this bibliographic source. [23] Alternatively, resonance based effects may be employed at fixed ...
In this example, the frequency ω 3dB such that ω 3dB C M R A = 1 marks the end of the low-frequency response region and sets the bandwidth or cutoff frequency of the amplifier. The effect of C M upon the amplifier bandwidth is greatly reduced for low impedance drivers ( C M R A is small if R A is small).
In a transmission line, signal velocity is the reciprocal of the square root of the capacitance-inductance product, where inductance and capacitance are typically expressed as per-unit length. In circuit boards made of FR-4 material, the signal velocity is typically about six inches (15 cm) per nanosecond, or 6.562 ps/mm.
The natural frequency (that is, the frequency at which it will oscillate when isolated from any other system, as described above) is determined by the capacitance and inductance values. In most applications the tuned circuit is part of a larger circuit which applies alternating current to it, driving continuous oscillations.