Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the Bernoulli distribution, named after Swiss mathematician Jacob Bernoulli, [1] is the discrete probability distribution of a random variable which takes the value 1 with probability and the value 0 with probability =.
The term Bernoulli sequence is often used informally to refer to a realization of a Bernoulli process. However, the term has an entirely different formal definition as given below. Suppose a Bernoulli process formally defined as a single random variable (see preceding section). For every infinite sequence x of coin flips, there is a sequence of ...
Random variables describing Bernoulli trials are often encoded using the convention that 1 = "success", 0 = "failure". Closely related to a Bernoulli trial is a binomial experiment, which consists of a fixed number n {\displaystyle n} of statistically independent Bernoulli trials, each with a probability of success p {\displaystyle p} , and ...
A Binomial distributed random variable X ~ B(n, p) can be considered as the sum of n Bernoulli distributed random variables. So the sum of two Binomial distributed random variables X ~ B(n, p) and Y ~ B(m, p) is equivalent to the sum of n + m Bernoulli distributed random variables, which means Z = X + Y ~ B(n + m, p). This can also be proven ...
Probability theory or probability calculus is the branch of mathematics concerned with probability.Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms.
A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. [1] The term 'random variable' in its mathematical definition refers to neither randomness nor variability [ 2 ] but instead is a mathematical function in which
A random variable X has a Bernoulli distribution if Pr(X = 1) = p and Pr(X = 0) = 1 − p for some p ∈ (0, 1).. De Finetti's theorem states that the probability distribution of any infinite exchangeable sequence of Bernoulli random variables is a "mixture" of the probability distributions of independent and identically distributed sequences of Bernoulli random variables.
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.