Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the Bernoulli distribution, named after Swiss mathematician Jacob Bernoulli, [1] is the discrete probability distribution of a random variable which takes the value 1 with probability and the value 0 with probability =.
Random variables describing Bernoulli trials are often encoded using the convention that 1 = "success", 0 = "failure". Closely related to a Bernoulli trial is a binomial experiment, which consists of a fixed number n {\displaystyle n} of statistically independent Bernoulli trials, each with a probability of success p {\displaystyle p} , and ...
The term Bernoulli sequence is often used informally to refer to a realization of a Bernoulli process. However, the term has an entirely different formal definition as given below. Suppose a Bernoulli process formally defined as a single random variable (see preceding section). For every infinite sequence x of coin flips, there is a sequence of ...
A Binomial distributed random variable X ~ B(n, p) can be considered as the sum of n Bernoulli distributed random variables. So the sum of two Binomial distributed random variables X ~ B(n, p) and Y ~ B(m, p) is equivalent to the sum of n + m Bernoulli distributed random variables, which means Z = X + Y ~ B(n + m, p). This can also be proven ...
An example of such distributions could be a mix of discrete and continuous distributions—for example, a random variable that is 0 with probability 1/2, and takes a random value from a normal distribution with probability 1/2.
A random variable X has a Bernoulli distribution if Pr(X = 1) = p and Pr(X = 0) = 1 − p for some p ∈ (0, 1).. De Finetti's theorem states that the probability distribution of any infinite exchangeable sequence of Bernoulli random variables is a "mixture" of the probability distributions of independent and identically distributed sequences of Bernoulli random variables.
A binomial distributed random variable Y with parameters n and p is obtained as the sum of n independent and identically Bernoulli-distributed random variables X 1, X 2, ..., X n [4] Example: A coin is tossed three times. Find the probability of getting exactly two heads. This problem can be solved by looking at the sample space.
Entropy of a Bernoulli trial (in shannons) as a function of binary outcome probability, called the binary entropy function.. In information theory, the binary entropy function, denoted or (), is defined as the entropy of a Bernoulli process (i.i.d. binary variable) with probability of one of two values, and is given by the formula: