enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bernoulli distribution - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_distribution

    In probability theory and statistics, the Bernoulli distribution, named after Swiss mathematician Jacob Bernoulli, [1] is the discrete probability distribution of a random variable which takes the value 1 with probability and the value 0 with probability =.

  3. Bernoulli trial - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_trial

    Random variables describing Bernoulli trials are often encoded using the convention that 1 = "success", 0 = "failure". Closely related to a Bernoulli trial is a binomial experiment, which consists of a fixed number n {\displaystyle n} of statistically independent Bernoulli trials, each with a probability of success p {\displaystyle p} , and ...

  4. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    This does not look random, but it satisfies the definition of random variable. This is useful because it puts deterministic variables and random variables in the same formalism. The discrete uniform distribution, where all elements of a finite set are equally likely. This is the theoretical distribution model for a balanced coin, an unbiased ...

  5. Bernoulli process - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_process

    In probability and statistics, a Bernoulli process (named after Jacob Bernoulli) is a finite or infinite sequence of binary random variables, so it is a discrete-time stochastic process that takes only two values, canonically 0 and 1. The component Bernoulli variables X i are identically distributed and independent.

  6. Completeness (statistics) - Wikipedia

    en.wikipedia.org/wiki/Completeness_(statistics)

    The Bernoulli model admits a complete statistic. [1] Let X be a random sample of size n such that each X i has the same Bernoulli distribution with parameter p. Let T be the number of 1s observed in the sample, i.e. = =. T is a statistic of X which has a binomial distribution with parameters (n,p).

  7. Binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Binomial_distribution

    The following is an example of applying a continuity correction. Suppose one wishes to calculate Pr(X ≤ 8) for a binomial random variable X. If Y has a distribution given by the normal approximation, then Pr(X ≤ 8) is approximated by Pr(Y ≤ 8.5). The addition of 0.5 is the continuity correction; the uncorrected normal approximation gives ...

  8. Probability theory - Wikipedia

    en.wikipedia.org/wiki/Probability_theory

    An example of such distributions could be a mix of discrete and continuous distributions—for example, a random variable that is 0 with probability 1/2, and takes a random value from a normal distribution with probability 1/2.

  9. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.