Search results
Results from the WOW.Com Content Network
In chemistry, a suspension is a heterogeneous mixture of a fluid that contains solid particles sufficiently large for sedimentation. The particles may be visible to the naked eye , usually must be larger than one micrometer , and will eventually settle , although the mixture is only classified as a suspension when and while the particles have ...
The volume of such a mixture is slightly less than the sum of the volumes of the components. Thus, by the above definition, the term "40% alcohol by volume" refers to a mixture of 40 volume units of ethanol with enough water to make a final volume of 100 units, rather than a mixture of 40 units of ethanol with 60 units of water.
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
Solvent Density (g cm-3) Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) K f (°C⋅kg/mol) Data source; Aniline: 184.3 3.69 –5.96 –5.87 K b & K f [1]: Lauric acid: 298.9 44 ...
In physics and chemistry, a non-Newtonian fluid is a fluid that does not follow Newton's law of viscosity, that is, it has variable viscosity dependent on stress. In particular, the viscosity of non-Newtonian fluids can change when subjected to force. Ketchup, for example, becomes runnier when shaken and is thus a non-Newtonian fluid.
A colloid is a heterogeneous mixture where the dispersed particles have at least in one direction a dimension roughly between 1 nm and 1 μm or that in a system discontinuities are found at distances of that order. [8] A suspension is a heterogeneous dispersion of larger particles in a medium. Unlike solutions and colloids, if left undisturbed ...
If the solution were ideal, its volume would be the sum of the unmixed components. The volume of 0.2 kg pure ethanol is 0.2 kg x 1.27 L/kg = 0.254 L, and the volume of 0.8 kg pure water is 0.8 kg x 1.0018 L/kg = 0.80144 L, so the ideal solution volume would be 0.254 L + 0.80144 L = 1.055 L.
Some mixtures will readily form solid solutions over a range of concentrations, while other mixtures will not form solid solutions at all. The propensity for any two substances to form a solid solution is a complicated matter involving the chemical , crystallographic , and quantum properties of the substances in question.