enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gibbard's theorem - Wikipedia

    en.wikipedia.org/wiki/Gibbard's_theorem

    In the fields of mechanism design and social choice theory, Gibbard's theorem is a result proven by philosopher Allan Gibbard in 1973. [1] It states that for any deterministic process of collective decision, at least one of the following three properties must hold: The process is dictatorial, i.e. there is a single voter whose vote chooses the ...

  3. Proof of impossibility - Wikipedia

    en.wikipedia.org/wiki/Proof_of_impossibility

    Gibbard's theorem shows that any strategyproof game form (i.e. one with a dominant strategy) with more than two outcomes is dictatorial. The Gibbard–Satterthwaite theorem is a special case showing that no deterministic voting system can be fully invulnerable to strategic voting in all circumstances, regardless of how others vote.

  4. Revelation principle - Wikipedia

    en.wikipedia.org/wiki/Revelation_principle

    The revelation principle shows that, while Gibbard's theorem proves it is impossible to design a system that will always be fully invulnerable to strategy (if we do not know how players will behave), it is possible to design a system that encourages honesty given a solution concept (if the corresponding equilibrium is unique). [3] [4]

  5. Gibbard–Satterthwaite theorem - Wikipedia

    en.wikipedia.org/wiki/Gibbard–Satterthwaite...

    The Gibbard–Satterthwaite theorem is a theorem in social choice theory. It was first conjectured by the philosopher Michael Dummett and the mathematician Robin Farquharson in 1961 [ 1 ] and then proved independently by the philosopher Allan Gibbard in 1973 [ 2 ] and economist Mark Satterthwaite in 1975. [ 3 ]

  6. Huntington–Hill method - Wikipedia

    en.wikipedia.org/wiki/Huntington–Hill_method

    However, it is not clear if we should calculate the average before or after allocating an additional seat, and the two procedures give different results. Huntington-Hill uses a continuity correction as a compromise, given by taking the geometric mean of both divisors, i.e.: [ 4 ]

  7. Allan Gibbard - Wikipedia

    en.wikipedia.org/wiki/Allan_Gibbard

    Gibbard's theorem is itself generalized by Gibbard's 1978 theorem [11] and Hylland's theorem, which extend these results to non-deterministic processes, i.e. where the outcome may not only depend on the agents' actions but may also involve an element of chance. The Gibbard's theorem assumes the collective decision results in exactly one winner ...

  8. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Gershgorin circle theorem (matrix theory) Gibbard–Satterthwaite theorem (voting methods) Girsanov's theorem (stochastic processes) Glaisher's theorem (number theory) Gleason's theorem (Hilbert space) Glivenko's theorem (mathematical logic) Glivenko's theorem (probability) Glivenko–Cantelli theorem (probability) Goddard–Thorn theorem ...

  9. Strategic voting - Wikipedia

    en.wikipedia.org/wiki/Strategic_voting

    Gibbard's theorem shows that no deterministic single-winner voting method can be completely immune to strategy, but makes no claims about the severity of strategy or how often strategy succeeds. Later results show that some methods are more manipulable than others.