Search results
Results from the WOW.Com Content Network
The mortal matrix problem. Determining whether a finite set of upper triangular 3 × 3 matrices with nonnegative integer entries generates a free semigroup. [citation needed] Determining whether two finitely generated subsemigroups of integer matrices have a common element. [3]
A permutation matrix is a (0, 1)-matrix, all of whose columns and rows each have exactly one nonzero element.. A Costas array is a special case of a permutation matrix.; An incidence matrix in combinatorics and finite geometry has ones to indicate incidence between points (or vertices) and lines of a geometry, blocks of a block design, or edges of a graph.
Matrix-free conjugate gradient method has been applied in the non-linear elasto-plastic finite element solver. [7] Solving these equations requires the calculation of the Jacobian which is costly in terms of CPU time and storage. To avoid this expense, matrix-free methods are employed.
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
In computer science, the matrix mortality problem (or mortal matrix problem) is a decision problem that asks, given a finite set of n×n matrices with integer coefficients, whether the zero matrix can be expressed as a finite product of matrices from this set. The matrix mortality problem is known to be undecidable when n ≥ 3 [1].
For example, for the 2×2 matrix = [], the half-vectorization is = []. There exist unique matrices transforming the half-vectorization of a matrix to its vectorization and vice versa called, respectively, the duplication matrix and the elimination matrix .
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In computer science and mathematical logic, satisfiability modulo theories (SMT) is the problem of determining whether a mathematical formula is satisfiable.It generalizes the Boolean satisfiability problem (SAT) to more complex formulas involving real numbers, integers, and/or various data structures such as lists, arrays, bit vectors, and strings.