Search results
Results from the WOW.Com Content Network
Let H = {h 1, h 2, ..., h k} be the convex hull of P; then the farthest-point Voronoi diagram is a subdivision of the plane into k cells, one for each point in H, with the property that a point q lies in the cell corresponding to a site h i if and only if d(q, h i) > d(q, p j) for each p j ∈ S with h i ≠ p j, where d(p, q) is the Euclidean ...
The cell for a given circle C consists of all the points for which the power distance to C is smaller than the power distance to the other circles. The power diagram is a form of generalized Voronoi diagram, and coincides with the Voronoi diagram of the circle centers in the case that all the circles have equal radii. [1] [2] [3] [4]
The analytic determination of the intersection curve of two surfaces is easy only in simple cases; for example: a) the intersection of two planes, b) plane section of a quadric (sphere, cylinder, cone, etc.), c) intersection of two quadrics in special cases. For the general case, literature provides algorithms, in order to calculate points of ...
The simplest case in Euclidean geometry is the line–line intersection between two distinct lines, which either is one point (sometimes called a vertex) or does not exist (if the lines are parallel). Other types of geometric intersection include: Line–plane intersection; Line–sphere intersection; Intersection of a polyhedron with a line
For a plane, the two angles are called its strike (angle) and its dip (angle). A strike line is the intersection of a horizontal plane with the observed planar feature (and therefore a horizontal line), and the strike angle is the bearing of this line (that is, relative to geographic north or from magnetic north). The dip is the angle between a ...
If two lines ℓ 1 and ℓ 2 intersect, then ℓ 1 ∩ ℓ 2 is a point. If p is a point not lying on the same plane, then (ℓ 1 ∩ ℓ 2) + p = (ℓ 1 + p) ∩ (ℓ 2 + p), both representing a line. But when ℓ 1 and ℓ 2 are parallel, this distributivity fails, giving p on the left-hand side and a third parallel line on the right-hand side.
In mathematics, Scheinerman's conjecture, now a theorem, states that every planar graph is the intersection graph of a set of line segments in the plane. This conjecture was formulated by E. R. Scheinerman in his Ph.D. thesis , following earlier results that every planar graph could be represented as the intersection graph of a set of simple curves in the plane (Ehrlich, Even & Tarjan 1976).
This can be thought of as placing a sphere tangent to the plane (just like a ball on the floor), removing the top point, and projecting the sphere onto the plane from this point. This is one of the projections that may be used in making a flat map of part of the Earth's surface. The resulting geometry has constant positive curvature.