Search results
Results from the WOW.Com Content Network
A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.
Every family of sets with n different sets has at least log 2 n elements in its union, with equality when the family is a power set. [30] Every partial cube with n vertices has isometric dimension at least log 2 n, and has at most 1 / 2 n log 2 n edges, with equality when the partial cube is a hypercube graph. [31]
For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d. Derivations also use the log definitions x = b log b (x ...
Because log(x) is the sum of the terms of the form log(1 + 2 −k) corresponding to those k for which the factor 1 + 2 −k was included in the product P, log(x) may be computed by simple addition, using a table of log(1 + 2 −k) for all k. Any base may be used for the logarithm table. [53]
Visualization of powers of two from 1 to 1024 (2 0 to 2 10) as base-2 Dienes blocks. A power of two is a number of the form 2 n where n is an integer, that is, the result of exponentiation with number two as the base and integer n as the exponent. In the fast-growing hierarchy, 2 n is exactly equal to ().
x 1 = x; x 2 = x 2 for i = k - 2 to 0 do if n i = 0 then x 2 = x 1 * x 2; x 1 = x 1 2 else x 1 = x 1 * x 2; x 2 = x 2 2 return x 1. The algorithm performs a fixed sequence of operations (up to log n): a multiplication and squaring takes place for each bit in the exponent, regardless of the bit's specific value. A similar algorithm for ...
The exponent is usually shown as a superscript to the right of the base as b n or in computer code as b^n. This binary operation is often read as "b to the power n"; it may also be called "b raised to the nth power", "the nth power of b", [2] or most briefly "b to the n".
The exponent field is biased by 16383, meaning that 16383 has to be subtracted from the value in the exponent field to compute the actual power of 2. [20] An exponent field value of 32767 (all fifteen bits 1 ) is reserved so as to enable the representation of special states such as infinity and Not a Number .