enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Characteristic energy - Wikipedia

    en.wikipedia.org/wiki/Characteristic_energy

    After reducing the problem to the relative motion of the bodies in the plane, he defines the constant of the motion c 3 by the equation ẋ 2 + ẏ 2 = 2k 2 M/r + c 3, where M is the total mass of the two bodies and k 2 is Moulton's notation for the gravitational constant. He defines c 1, c 2, and c 4 to be other constants of the

  3. Celestial mechanics - Wikipedia

    en.wikipedia.org/wiki/Celestial_mechanics

    Celestial mechanics is the branch of astronomy that deals with the motions of objects in outer space. Historically, celestial mechanics applies principles of physics (classical mechanics) to astronomical objects, such as stars and planets, to produce ephemeris data.

  4. Mean anomaly - Wikipedia

    en.wikipedia.org/wiki/Mean_anomaly

    The classical method of finding the position of an object in an elliptical orbit from a set of orbital elements is to calculate the mean anomaly by this equation, and then to solve Kepler's equation for the eccentric anomaly. Define ϖ as the longitude of the pericenter, the angular distance of the pericenter from a reference direction.

  5. Universal variable formulation - Wikipedia

    en.wikipedia.org/wiki/Universal_variable_formulation

    The equation is the same as the equation for the harmonic oscillator, a well-known equation in both physics and mathematics, however, the unknown constant vector is somewhat inconvenient. Taking the derivative again, we eliminate the constant vector P , {\displaystyle \ \mathbf {P} \ ,} at the price of getting a third-degree differential equation:

  6. Numerical model of the Solar System - Wikipedia

    en.wikipedia.org/wiki/Numerical_model_of_the...

    A numerical model of the Solar System is a set of mathematical equations, which, when solved, give the approximate positions of the planets as a function of time. Attempts to create such a model established the more general field of celestial mechanics. The results of this simulation can be compared with past measurements to check for accuracy ...

  7. Kepler's equation - Wikipedia

    en.wikipedia.org/wiki/Kepler's_equation

    In orbital mechanics, Kepler's equation relates various geometric properties of the orbit of a body subject to a central force. It was derived by Johannes Kepler in 1609 in Chapter 60 of his Astronomia nova , [ 1 ] [ 2 ] and in book V of his Epitome of Copernican Astronomy (1621) Kepler proposed an iterative solution to the equation.

  8. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets, satellites, and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and the law of universal gravitation .

  9. Lambert's problem - Wikipedia

    en.wikipedia.org/wiki/Lambert's_problem

    In celestial mechanics, Lambert's problem is concerned with the determination of an orbit from two position vectors and the time of flight, posed in the 18th century by Johann Heinrich Lambert and formally solved with mathematical proof by Joseph-Louis Lagrange. It has important applications in the areas of rendezvous, targeting, guidance, and ...