enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Characteristic energy - Wikipedia

    en.wikipedia.org/wiki/Characteristic_energy

    In the second edition (1914) of this book, Moulton solves the problem of the motion of two bodies under an attractive gravitational force in chapter 5. After reducing the problem to the relative motion of the bodies in the plane, he defines the constant of the motion c 3 by the equation ẋ 2 + ẏ 2 = 2k 2 M/r + c 3,

  3. Celestial mechanics - Wikipedia

    en.wikipedia.org/wiki/Celestial_mechanics

    Celestial mechanics is the branch of astronomy that deals with the motions of objects in outer space. Historically, celestial mechanics applies principles of physics (classical mechanics) to astronomical objects, such as stars and planets, to produce ephemeris data.

  4. Gauss's method - Wikipedia

    en.wikipedia.org/wiki/Gauss's_method

    In orbital mechanics (a subfield of celestial mechanics), Gauss's method is used for preliminary orbit determination from at least three observations (more observations increases the accuracy of the determined orbit) of the orbiting body of interest at three different times.

  5. Numerical model of the Solar System - Wikipedia

    en.wikipedia.org/wiki/Numerical_model_of_the...

    A numerical model of the Solar System is a set of mathematical equations, which, when solved, give the approximate positions of the planets as a function of time. Attempts to create such a model established the more general field of celestial mechanics. The results of this simulation can be compared with past measurements to check for accuracy ...

  6. Specific angular momentum - Wikipedia

    en.wikipedia.org/wiki/Specific_angular_momentum

    In celestial mechanics, the specific relative angular momentum (often denoted or ) of a body is the angular momentum of that body divided by its mass. [1] In the case of two orbiting bodies it is the vector product of their relative position and relative linear momentum, divided by the mass of the body in question.

  7. Kepler's equation - Wikipedia

    en.wikipedia.org/wiki/Kepler's_equation

    In orbital mechanics, Kepler's equation relates various geometric properties of the orbit of a body subject to a central force. It was derived by Johannes Kepler in 1609 in Chapter 60 of his Astronomia nova , [ 1 ] [ 2 ] and in book V of his Epitome of Copernican Astronomy (1621) Kepler proposed an iterative solution to the equation.

  8. Gaussian gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gaussian_gravitational...

    If modern [clarification needed] values were inserted into the defining equation, a value of 0.017 202 097 89 would result. [dubious – discuss] [22] It is also possible to set the gravitational constant, the mass of the Sun, and the astronomical unit to 1. This defines a unit of time with which the period of the resulting orbit is equal to 2π.

  9. Newton's theorem of revolving orbits - Wikipedia

    en.wikipedia.org/wiki/Newton's_theorem_of...

    Newton illustrates his formula with three examples. In the first two, the central force is a power law, F(r) = r n−3, so C(r) is proportional to r n. The formula above indicates that the angular motion is multiplied by a factor k = 1/ √ n, so that the apsidal angle α equals 180°/ √ n.