enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Universal variable formulation - Wikipedia

    en.wikipedia.org/wiki/Universal_variable_formulation

    In orbital mechanics, the universal variable formulation is a method used to solve the two-body Kepler problem. It is a generalized form of Kepler's Equation, extending it to apply not only to elliptic orbits, but also parabolic and hyperbolic orbits common for spacecraft departing from a planetary orbit.

  3. Gauss's method - Wikipedia

    en.wikipedia.org/wiki/Gauss's_method

    In orbital mechanics (a subfield of celestial mechanics), Gauss's method is used for preliminary orbit determination from at least three observations (more observations increases the accuracy of the determined orbit) of the orbiting body of interest at three different times.

  4. Equation of the center - Wikipedia

    en.wikipedia.org/wiki/Equation_of_the_center

    In two-body, Keplerian orbital mechanics, the equation of the center is the angular difference between the actual position of a body in its elliptical orbit and the position it would occupy if its motion were uniform, in a circular orbit of the same period.

  5. Celestial mechanics - Wikipedia

    en.wikipedia.org/wiki/Celestial_mechanics

    Celestial mechanics is the branch of astronomy that deals with the motions of objects in outer space. Historically, celestial mechanics applies principles of physics (classical mechanics) to astronomical objects, such as stars and planets, to produce ephemeris data.

  6. Kepler's equation - Wikipedia

    en.wikipedia.org/wiki/Kepler's_equation

    In orbital mechanics, Kepler's equation relates various geometric properties of the orbit of a body subject to a central force.. It was derived by Johannes Kepler in 1609 in Chapter 60 of his Astronomia nova, [1] [2] and in book V of his Epitome of Copernican Astronomy (1621) Kepler proposed an iterative solution to the equation.

  7. Numerical model of the Solar System - Wikipedia

    en.wikipedia.org/wiki/Numerical_model_of_the...

    A numerical model of the Solar System is a set of mathematical equations, which, when solved, give the approximate positions of the planets as a function of time. Attempts to create such a model established the more general field of celestial mechanics. The results of this simulation can be compared with past measurements to check for accuracy ...

  8. Specific angular momentum - Wikipedia

    en.wikipedia.org/wiki/Specific_angular_momentum

    In celestial mechanics, the specific relative angular momentum (often denoted or ) of a body is the angular momentum of that body divided by its mass. [1] In the case of two orbiting bodies it is the vector product of their relative position and relative linear momentum, divided by the mass of the body in question.

  9. Newton's theorem of revolving orbits - Wikipedia

    en.wikipedia.org/wiki/Newton's_theorem_of...

    Newton illustrates his formula with three examples. In the first two, the central force is a power law, F(r) = r n−3, so C(r) is proportional to r n. The formula above indicates that the angular motion is multiplied by a factor k = 1/ √ n, so that the apsidal angle α equals 180°/ √ n.