Search results
Results from the WOW.Com Content Network
The contact process is a method of producing sulfuric acid in the high concentrations needed for industrial processes. Platinum was originally used as the catalyst for this reaction; however, because it is susceptible to reacting with arsenic impurities in the sulfur feedstock, vanadium(V) oxide (V 2 O 5) has since been preferred.
The lead chamber process was an industrial method used to produce sulfuric acid in large quantities. It has been largely supplanted by the contact process.. In 1746 in Birmingham, England, John Roebuck began producing sulfuric acid in lead-lined chambers, which were stronger and less expensive and could be made much larger than the glass containers that had been used previously.
The process involves intermediate formation of sodium bisulfate, an exothermic reaction that occurs at room temperature: NaCl + H 2 SO 4 → HCl + NaHSO 4. The second step of the process is endothermic, requiring energy input: NaCl + NaHSO 4 → HCl + Na 2 SO 4. Temperatures in the range 600-700 °C are required. [5]
The complementary process, when a proton is removed from a Brønsted–Lowry acid, is deprotonation.) Some examples include The protonation of water by sulfuric acid: H 2 SO 4 + H 2 O ⇌ H 3 O + + HSO − 4; The protonation of isobutene in the formation of a carbocation: (CH 3) 2 C=CH 2 + HBF 4 ⇌ (CH 3) 3 C + + BF − 4
Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid (Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen, and hydrogen, with the molecular formula H 2 SO 4. It is a colorless, odorless, and viscous liquid that is miscible with water. [7] Structure ...
A gas evolution reaction is a chemical reaction in which one of the end products is a gas such as oxygen or carbon dioxide. [ 1 ] [ 2 ] Gas evolution reactions may be carried out in a fume chamber when the gases produced are poisonous when inhaled or explosive.
The primary advantages of Fischer esterification compared to other esterification processes are based on its relative simplicity. Straightforward acidic conditions can be used if acid-sensitive functional groups are not an issue; sulfuric acid can be used; weaker acids can be used with a tradeoff of longer reaction times.
The standard Gibbs free energy of formation (G f °) of a compound is the change of Gibbs free energy that accompanies the formation of 1 mole of a substance in its standard state from its constituent elements in their standard states (the most stable form of the element at 1 bar of pressure and the specified temperature, usually 298.15 K or 25 °C).