Search results
Results from the WOW.Com Content Network
An induction motor or asynchronous motor is an AC electric motor in which the electric current in the rotor that produces torque is obtained by electromagnetic induction from the magnetic field of the stator winding. [1] An induction motor therefore needs no electrical connections to the rotor.
Squirrel-cage induction motors are very prevalent in industry, in sizes from below 1 kilowatt (1.3 hp) up to tens of megawatts (tens-of-thousand horsepower). They are simple, rugged, and self-starting, and maintain a reasonably constant speed from light load to full load, set by the frequency of the power supply and the number of poles of the ...
A linear induction motor (LIM) is an alternating current (AC), asynchronous linear motor that works by the same general principles as other induction motors but is typically designed to directly produce motion in a straight line. Characteristically, linear induction motors have a finite primary or secondary length, which generates end-effects ...
Each inverter unit controls two motors on one bogie (1C2M), and one motor car features two of such units. Motors are three-phrase AC induction type, model MLR111, with a maximum output of 150 kW (200 hp). However, the main difference is that the traction for the trains is higher pitched than the ones from C751B trains which are lower pitched.
Fig. 2—Ferraris motor (larger version) In 1885, Professor Ferraris constructed the motor depicted in plan in Fig 1, which was not, however, publicly shown till 1888. It was exhibited in 1893 at the World's Fair at Chicago. It consisted of two pairs of electromagnets A A and B B', having a common yoke made by winding iron wire around the exterior.
1888 – An AC induction motor is featured in a paper published by Galileo Ferraris and is patented in the U.S. by Nikola Tesla. [11] 1892 – Rudolf Diesel patents the Diesel engine (U.S. patent 608,845). [12] 1899 – Ferdinand Porsche creates the Lohner–Porsche, the first hybrid vehicle.
The switched reluctance motor (SRM) is a type of reluctance motor. Unlike brushed DC motors , power is delivered to windings in the stator (case) rather than the rotor . This simplifies mechanical design because power does not have to be delivered to the moving rotor, which eliminates the need for a commutator .
The switched reluctance motor (SRM) is a type of reluctance motor. Unlike brushed DC motors , power is delivered to windings in the stator (case) rather than the rotor . This simplifies mechanical design because power does not have to be delivered to the moving rotor, which eliminates the need for a commutator .