Search results
Results from the WOW.Com Content Network
Aeronautical chart on Lambert conformal conic projection with standard parallels at 33°N and 45°N. A Lambert conformal conic projection (LCC) is a conic map projection used for aeronautical charts, portions of the State Plane Coordinate System, and many national and regional mapping systems.
Conic sections of varying eccentricity sharing a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated pair of lines.
Graph solver tools can also be used to find useful points, such as maxima/minima and intersection points. The calculator also has a special section for advanced conic section graphing. Dynamic graphing provides all the functionality of regular graphing, but allows the binding of a variable in the graph equation to time over a value range.
In Euclidean and projective geometry, five points determine a conic (a degree-2 plane curve), just as two (distinct) points determine a line (a degree-1 plane curve).There are additional subtleties for conics that do not exist for lines, and thus the statement and its proof for conics are both more technical than for lines.
If the conic is non-degenerate, the conjugates of a point always form a line and the polarity defined by the conic is a bijection between the points and lines of the extended plane containing the conic (that is, the plane together with the points and line at infinity). If the point p lies on the conic Q, the polar line of p is the tangent line ...
Constructions can be made with points, vectors, segments, lines, polygons, conic sections, inequalities, implicit polynomials and functions, all of which can be edited dynamically later. Elements can be entered and modified using mouse and touch controls, or through an input bar. GeoGebra can store variables for numbers, vectors and points ...
A bi-conic nose cone shape is simply a cone with length L 1 stacked on top of a frustum of a cone (commonly known as a conical transition section shape) with length L 2, where the base of the upper cone is equal in radius R 1 to the top radius of the smaller frustum with base radius R 2. = +
In the Cartesian coordinate system, the graph of a quadratic equation in two variables is always a conic section – though it may be degenerate, and all conic sections arise in this way. The equation will be of the form A x 2 + B x y + C y 2 + D x + E y + F = 0 with A , B , C not all zero. {\displaystyle Ax^{2}+Bxy+Cy^{2}+Dx+Ey+F=0{\text{ with ...