Search results
Results from the WOW.Com Content Network
A fractional-n frequency synthesizer can be constructed using two integer dividers, a divide-by-N, and a divide-by-(N + 1) frequency divider. With a modulus controller, N is toggled between the two values so that the VCO alternates between one locked frequency and the other. The VCO stabilizes at a frequency that is the time average of the two ...
The solution is the dual modulus prescaler. The main divider is split into two parts, the main part N and an additional divider A, which is strictly less than N. Both dividers are clocked from the output of the dual-modulus prescaler, but only the output of the N divider is fed back to the comparator.
A non-integer multiple of the reference frequency can also be created by replacing the simple divide-by-N counter in the feedback path with a programmable pulse swallowing counter. This technique is usually referred to as a fractional-N synthesizer or fractional-N PLL. [dubious – discuss] The oscillator generates a periodic output signal.
A first linear mathematical model of second-order CP-PLL was suggested by F. Gardner in 1980. [2] A nonlinear model without the VCO overload was suggested by M. van Paemel in 1994 [3] and then refined by N. Kuznetsov et al. in 2019. [4] The closed form mathematical model of CP-PLL taking into account the VCO overload is derived in. [5]
Thus it will produce an output of 100 kHz for a count of 1, 200 kHz for a count of 2, 1 MHz for a count of 10 and so on. Note that only whole multiples of the reference frequency can be obtained with the simplest integer N dividers. Fractional N dividers are readily available. [20]
This allows the synthesis of frequencies that are N/M times the reference frequency. This can be accomplished in a different manner by periodically changing the integer value of an integer-N frequency divider, effectively resulting in a multiplier with both whole number and fractional component. Such a multiplier is called a fractional-N ...
Each clock cycle produces a new N-bit output consisting of the previous output obtained from the register summed with the frequency control word (FCW) which is constant for a given output frequency. The resulting output waveform is a staircase with step size Δ F {\displaystyle \Delta F} , the integer value of the FCW. [ 6 ]
Given a fractional cover, in which each set S i has weight w i, choose randomly the value of each 0–1 indicator variable x i to be 1 with probability w i × (ln n +1), and 0 otherwise. Then any element e j has probability less than 1/( e × n ) of remaining uncovered, so with constant probability all elements are covered.