enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Order of operations - Wikipedia

    en.wikipedia.org/wiki/Order_of_operations

    The order of operations, that is, the order in which the operations in an expression are usually performed, results from a convention adopted throughout mathematics, science, technology and many computer programming languages. It is summarized as: [2] [5] Parentheses; Exponentiation; Multiplication and division; Addition and subtraction

  3. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    It follows from the preceding equations that ⁡ = when x is an integer (this results from the repeated-multiplication definition of the exponentiation). If x is real, ⁡ = results from the definitions given in preceding sections, by using the exponential identity if x is rational, and the continuity of the exponential function otherwise.

  4. Pentation - Wikipedia

    en.wikipedia.org/wiki/Pentation

    The first three values of the expression x[5]2. The value of 3[5]2 is 7 625 597 484 987; values for higher x, such as 4[5]2, which is about 2.361 × 10 8.072 × 10 153 are much too large to appear on the graph. In mathematics, pentation (or hyper-5) is the fifth hyperoperation.

  5. Knuth's up-arrow notation - Wikipedia

    en.wikipedia.org/wiki/Knuth's_up-arrow_notation

    The sequence starts with a unary operation (the successor function with n = 0), and continues with the binary operations of addition (n = 1), multiplication (n = 2), exponentiation (n = 3), tetration (n = 4), pentation (n = 5), etc. Various notations have been used to represent hyperoperations.

  6. Category:Exponentials - Wikipedia

    en.wikipedia.org/wiki/Category:Exponentials

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file

  7. Characterizations of the exponential function - Wikipedia

    en.wikipedia.org/wiki/Characterizations_of_the...

    In mathematics, the exponential function can be characterized in many ways. This article presents some common characterizations, discusses why each makes sense, and proves that they are all equivalent. The exponential function occurs naturally in many branches of mathematics. Walter Rudin called it "the most important function in mathematics". [1]

  8. Exponentiation by squaring - Wikipedia

    en.wikipedia.org/wiki/Exponentiation_by_squaring

    For example, when computing x 2 k −1, the binary method requires k−1 multiplications and k−1 squarings. However, one could perform k squarings to get x 2 k and then multiply by x −1 to obtain x 2 k −1. To this end we define the signed-digit representation of an integer n in radix b as

  9. Baker–Campbell–Hausdorff formula - Wikipedia

    en.wikipedia.org/wiki/Baker–Campbell...

    The above lists all summands of order 6 or lower (i.e. those containing 6 or fewer X 's and Y 's). The X ↔ Y (anti-)/symmetry in alternating orders of the expansion, follows from Z(Y, X) = −Z(−X, −Y). A complete elementary proof of this formula can be found in the article on the derivative of the exponential map.