enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    In vector calculus, the Jacobian matrix (/ dʒ ə ˈ k oʊ b i ə n /, [1] [2] [3] / dʒ ɪ-, j ɪ-/) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives.

  3. List of common coordinate transformations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_coordinate...

    Let (x, y, z) be the standard Cartesian coordinates, and (ρ, θ, φ) the spherical coordinates, with θ the angle measured away from the +Z axis (as , see conventions in spherical coordinates). As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range ...

  4. Jacobi coordinates - Wikipedia

    en.wikipedia.org/wiki/Jacobi_coordinates

    In the theory of many-particle systems, Jacobi coordinates often are used to simplify the mathematical formulation. These coordinates are particularly common in treating polyatomic molecules and chemical reactions, [3] and in celestial mechanics. [4] An algorithm for generating the Jacobi coordinates for N bodies may be based upon binary trees. [5]

  5. Conformal map - Wikipedia

    en.wikipedia.org/wiki/Conformal_map

    The conformal property may be described in terms of the Jacobian derivative matrix of a coordinate transformation. The transformation is conformal whenever the Jacobian at each point is a positive scalar times a rotation matrix (orthogonal with determinant one). Some authors define conformality to include orientation-reversing mappings whose ...

  6. Helmert transformation - Wikipedia

    en.wikipedia.org/wiki/Helmert_transformation

    The transformation from a reference frame 1 to a reference frame 2 can be described with three translations Δx, Δy, Δz, three rotations Rx, Ry, Rz and a scale parameter μ. The Helmert transformation (named after Friedrich Robert Helmert, 1843–1917) is a geometric transformation method within a three-dimensional space.

  7. Pushforward (differential) - Wikipedia

    en.wikipedia.org/wiki/Pushforward_(differential)

    Thus the differential is a linear transformation, between tangent spaces, associated to the smooth map at each point. Therefore, in some chosen local coordinates, it is represented by the Jacobian matrix of the corresponding smooth map from R m {\displaystyle \mathbb {R} ^{m}} to R n {\displaystyle \mathbb {R} ^{n}} .

  8. Metric tensor - Wikipedia

    en.wikipedia.org/wiki/Metric_tensor

    Here det g is the determinant of the matrix formed by the components of the metric tensor in the coordinate chart. That Λ is well-defined on functions supported in coordinate neighborhoods is justified by Jacobian change of variables. It extends to a unique positive linear functional on C 0 (M) by means of a partition of unity.

  9. Generalized Jacobian - Wikipedia

    en.wikipedia.org/wiki/Generalized_Jacobian

    For m = 0 the generalized Jacobian J m is just the usual Jacobian J, an abelian variety of dimension g, the genus of C. For m a nonzero effective divisor the generalized Jacobian is an extension of J by a connected commutative affine algebraic group L m of dimension deg(m)−1. So we have an exact sequence 0 → L m → J m → J → 0