Search results
Results from the WOW.Com Content Network
While early mechanical metamaterials had regular repeats of simple unit cell structures, increasingly complex units and architectures are now being explored. Mechanical metamaterials can be seen as a counterpart to the rather well-known family of optical metamaterials and electromagnetic metamaterials. Mechanical properties, including ...
For microwave radiation, the features are on the order of millimeters. Microwave frequency metamaterials are usually constructed as arrays of electrically conductive elements (such as loops of wire) that have suitable inductive and capacitive characteristics. Many microwave metamaterials use split-ring resonators. [5] [6]
The history of metamaterials begins with artificial dielectrics in microwave engineering as it developed just after World War II. Yet, there are seminal explorations of artificial materials for manipulating electromagnetic waves at the end of the 19th century. [ 1 ]
The subwavelength periodicity [2] distinguishes photonic metamaterials from photonic band gap or photonic crystal structures. The cells are on a scale that is magnitudes larger than the atom, yet much smaller than the radiated wavelength, [3] [4] are on the order of nanometers. [3] [4] [5]
Taking thermal metamaterials as an example, the characteristic length for conductive thermal metamaterials is the thermal diffusion length. [24] Convective thermal metamaterials are characterized by the migration length of the fluid, while radiative thermal metamaterials hinge on the wavelength of thermal radiation.
Functional Metamaterials and Metadevices: Metamaterials are synthesised on the sub-wavelength scale to have optical properties (refractive index, dispersion) that can differ dramatically from those of bulk materials: perfect lenses, cloaking, and negative refractive index materials are examples. CUDOS aims to develop metamaterials that will ...
AOL Mail welcomes Verizon customers to our safe and delightful email experience!
Nonlinear metamaterials, a type of metamaterial, are being developed in order to manipulate electromagnetic radiation in new ways. Optical and electromagnetic properties of natural materials are often altered through chemistry. With metamaterials optical and electromagnetic properties can be engineered through the geometry of its unit cells.