Search results
Results from the WOW.Com Content Network
2 O is sp 3 hybridized in which the 2s atomic orbital and the three 2p orbitals of oxygen are hybridized to form four new hybridized orbitals which then participate in bonding by overlapping with the hydrogen 1s orbitals. As such, the predicted shape and bond angle of sp 3 hybridization is tetrahedral and 109.5°. This is in open agreement with ...
The water molecule is amphoteric in aqueous solution. It can either gain a proton to form a hydronium ion H 3 O +, or else lose a proton to form a hydroxide ion OH −. [7] Another possibility is the molecular autoionization reaction between two water molecules, in which one water molecule acts as an acid and another as a base. H 2 O + H 2 O ...
Efficient and economical water splitting would be a technological breakthrough that could underpin a hydrogen economy. A version of water splitting occurs in photosynthesis, but hydrogen is not produced. The reverse of water splitting is the basis of the hydrogen fuel cell. Water splitting using solar radiation has not been commercialized.
In the case of water, with its 104.5° HOH angle, the OH bonding orbitals are constructed from O(~sp 4.0) orbitals (~20% s, ~80% p), while the lone pairs consist of O(~sp 2.3) orbitals (~30% s, ~70% p). As discussed in the justification above, the lone pairs behave as very electropositive substituents and have excess s character.
For the hydrogen fluoride molecule, for example, two F lone pairs are essentially unhybridized p orbitals, while the other is an sp x hybrid orbital. An analogous consideration applies to water (one O lone pair is in a pure p orbital, another is in an sp x hybrid orbital).
In chemistry, isovalent or second order hybridization is an extension of orbital hybridization, the mixing of atomic orbitals into hybrid orbitals which can form chemical bonds, to include fractional numbers of atomic orbitals of each type (s, p, d). It allows for a quantitative depiction of bond formation when the molecular geometry deviates ...
Deprotonation of acetic acid by a hydroxide ion. Deprotonation (or dehydronation) is the removal (transfer) of a proton (or hydron, or hydrogen cation), (H +) from a Brønsted–Lowry acid in an acid–base reaction. [1] [2] The species formed is the conjugate base of that acid.
These deviations from idealized sp 3 hybridization (75% p character, 25% s character) for tetrahedral geometry are consistent with Bent's rule: lone pairs localize more electron density closer to the central atom compared to bonding pairs; hence, the use of orbitals with excess s character to form lone pairs (and, consequently, those with ...