enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    In mathematics, a power series (in one variable) is an infinite series of the form = = + + + … where represents the coefficient of the nth term and c is a constant called the center of the series. Power series are useful in mathematical analysis , where they arise as Taylor series of infinitely differentiable functions .

  3. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  4. Timeline of calculus and mathematical analysis - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_calculus_and...

    14th century - Madhava discovers the power series expansion for ⁡, ⁡, ⁡ and / [6] [7] This theory is now well known in the Western world as the Taylor series or infinite series. [ 8 ] 14th century - Parameshvara discovers a third order Taylor interpolation for sin ⁡ ( x + ϵ ) {\displaystyle \sin(x+\epsilon )} ,

  5. Series expansion - Wikipedia

    en.wikipedia.org/wiki/Series_expansion

    A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.

  6. Formal power series - Wikipedia

    en.wikipedia.org/wiki/Formal_power_series

    A formal power series can be loosely thought of as an object that is like a polynomial, but with infinitely many terms.Alternatively, for those familiar with power series (or Taylor series), one may think of a formal power series as a power series in which we ignore questions of convergence by not assuming that the variable X denotes any numerical value (not even an unknown value).

  7. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The series is precisely the Taylor series, except that divided differences appear in place of differentiation: the series is formally similar to the Newton series. When the function f is analytic at a , the terms in the series converge to the terms of the Taylor series, and in this sense generalizes the usual Taylor series.

  8. Generating function - Wikipedia

    en.wikipedia.org/wiki/Generating_function

    The left-hand side is the Maclaurin series expansion of the right-hand side. Alternatively, the equality can be justified by multiplying the power series on the left by 1 − x, and checking that the result is the constant power series 1 (in other words, that all coefficients except the one of x 0 are equal to 0). Moreover, there can be no ...

  9. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    Formal power series are used in combinatorics to describe and study sequences that are otherwise difficult to handle, for example, using the method of generating functions. The Hilbert–Poincaré series is a formal power series used to study graded algebras.