Search results
Results from the WOW.Com Content Network
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
Great-circle navigation or orthodromic navigation (related to orthodromic course; from Ancient Greek ορθός (orthós) 'right angle' and δρόμος (drómos) 'path') is the practice of navigating a vessel (a ship or aircraft) along a great circle.
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.
The shortest distance along the surface of a sphere between two points on the surface is along the great-circle which contains the two points. The great-circle distance article gives the formula for calculating the shortest arch length on a sphere about the size of the Earth. That article includes an example of the calculation.
English: A diagram illustrating great-circle distance (drawn in cyan) and the straight-line distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v, are also depicted.
They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such as great-circle distance. The first (direct) method computes the location of a point that is a given distance and azimuth (direction) from another point.
English: A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v, are also depicted. Two antipodal points, u and v, are also depicted.
The disk bounded by a great circle is called a great disk: it is the intersection of a ball and a plane passing through its center. In higher dimensions, the great circles on the n-sphere are the intersection of the n-sphere with 2-planes that pass through the origin in the Euclidean space R n + 1. Half of a great circle may be called a great ...