Search results
Results from the WOW.Com Content Network
Ω(n), the prime omega function, is the number of prime factors of n counted with multiplicity (so it is the sum of all prime factor multiplicities). A prime number has Ω(n) = 1. The first: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 (sequence A000040 in the OEIS). There are many special types of prime numbers. A composite number has Ω(n) > 1.
All prime numbers from 31 to 6,469,693,189 for free download. Lists of Primes at the Prime Pages. The Nth Prime Page Nth prime through n=10^12, pi(x) through x=3*10^13, Random primes in same range. Interface to a list of the first 98 million primes (primes less than 2,000,000,000) Weisstein, Eric W. "Prime Number Sequences". MathWorld.
Routines that also provide a prime factor of composite arguments (or all of its prime factors) ... PrimeGrid [150] twin primes: 2,996,863,034,895 × 2 1,290,000 ± 1 ...
150 is the sum of eight consecutive primes (7 + 11 + 13 + 17 + 19 + 23 + 29 + 31). Given 150, the Mertens function returns 0. [1] 150 is conjectured to be the only minimal difference greater than 1 of any increasing arithmetic progression of n primes (in this case, n = 7) that is not a primorial (a product of the first m primes). [2]
Sieve of Pritchard: algorithm steps for primes up to 150. In mathematics, the sieve of Pritchard is an algorithm for finding all prime numbers up to a specified bound. Like the ancient sieve of Eratosthenes, it has a simple conceptual basis in number theory. [1] It is especially suited to quick hand computation for small bounds.
For example, 3 is a Mersenne prime as it is a prime number and is expressible as 2 2 − 1. [1] [2] The exponents p corresponding to Mersenne primes must themselves be prime, although the vast majority of primes p do not lead to Mersenne primes—for example, 2 11 − 1 = 2047 = 23 × 89. [3]
If all the prime factors of a number are repeated it is called a powerful number (All perfect powers are powerful numbers). If none of its prime factors are repeated, it is called squarefree. (All prime numbers and 1 are squarefree.) For example, 72 = 2 3 × 3 2, all the prime factors are repeated, so 72 is a powerful number. 42 = 2 × 3 × 7 ...
These numbers have been proved prime by computer with a primality test for their form, ... 150 3×2 10829346 + 1 [61] 14 January 2014 3,259,959 151 11×2 10803449 + 1