Search results
Results from the WOW.Com Content Network
For example, the set of real numbers consisting of 0, 1, and all numbers in between is an interval, denoted [0, 1] and called the unit interval; the set of all positive real numbers is an interval, denoted (0, ∞); the set of all real numbers is an interval, denoted (−∞, ∞); and any single real number a is an interval, denoted [a, a].
An indifference graph, formed from a set of points on the real line by connecting pairs of points whose distance is at most one. In graph theory, a branch of mathematics, an indifference graph is an undirected graph constructed by assigning a real number to each vertex and connecting two vertices by an edge when their numbers are within one unit of each other. [1]
An interval graph is an undirected graph G formed from a family of intervals , =,,, … by creating one vertex v i for each interval S i, and connecting two vertices v i and v j by an edge whenever the corresponding two sets have a nonempty intersection.
An interval graph is a graph in which the nodes are 1-dimensional intervals (e.g. time intervals) and there is an edge between two intervals if and only if they intersect. An independent set in an interval graph is just a set of non-overlapping intervals.
Intermediate value theorem: Let be a continuous function defined on [,] and let be a number with () < < ().Then there exists some between and such that () =.. In mathematical analysis, the intermediate value theorem states that if is a continuous function whose domain contains the interval [a, b], then it takes on any given value between () and () at some point within the interval.
The edges of the graph are d-tuples of intervals, one interval in every real line. [1] The simplest case is d = 1. The vertex set of a 1-interval hypergraph is the set of real numbers; each edge in such a hypergraph is an interval of the real line. For example, the set { [−2, −1], [0, 5], [3, 7] } defines a 1-interval
Let f be a continuous function for which one knows an interval [a, b] such that f(a) and f(b) have opposite signs (a bracket). Let c = (a +b)/2 be the middle of the interval (the midpoint or the point that bisects the interval). Then either f(a) and f(c), or f(c) and f(b) have opposite
The complement of the comparability graph of an interval order (, ≤) is the interval graph (,). Interval orders should not be confused with the interval-containment orders, which are the inclusion orders on intervals on the real line (equivalently, the orders of dimension ≤ 2).