Search results
Results from the WOW.Com Content Network
Use: {{Hexadecimal|x}} where x is the decimal number to be converted to a hexadecimal. Decimals and fractions will be rounded down. The number is, by default, formatted with a final subscript 16 to display the base.
Hexadecimal (also known as base-16 or simply hex) is a positional numeral system that represents numbers using a radix (base) of sixteen. Unlike the decimal system representing numbers using ten symbols, hexadecimal uses sixteen distinct symbols, most often the symbols "0"–"9" to represent values 0 to 9 and "A"–"F" to represent values from ten to fifteen.
This is because the radix of the hexadecimal system (16) is a power of the radix of the binary system (2). More specifically, 16 = 2 4, so it takes four digits of binary to represent one digit of hexadecimal, as shown in the adjacent table. To convert a hexadecimal number into its binary equivalent, simply substitute the corresponding binary ...
Fast Half Float Conversions; Analog Devices variant (four-bit exponent) C source code to convert between IEEE double, single, and half precision can be found here; Java source code for half-precision floating-point conversion; Half precision floating point for one of the extended GCC features
Hexspeak is a novelty form of variant English spelling using the hexadecimal digits. Created by programmers as memorable magic numbers, hexspeak words can serve as a clear and unique identifier with which to mark memory or data. Hexadecimal notation represents numbers using the 16 digits 0123456789ABCDEF.
Six hexadecimal digits of precision is roughly equivalent to six decimal digits (i.e. (6 − 1) log 10 (16) ≈ 6.02). A conversion of single precision hexadecimal float to decimal string would require at least 9 significant digits (i.e. 6 log 10 (16) + 1 ≈ 8.22) in order to convert back to the same hexadecimal float value.
However, on modern standard computers (i.e., implementing IEEE 754), one may safely assume that the endianness is the same for floating-point numbers as for integers, making the conversion straightforward regardless of data type. Small embedded systems using special floating-point formats may be another matter, however.
For example, a packed decimal value encoded with the bytes 12 34 56 7C represents the fixed-point value +1,234.567 when the implied decimal point is located between the fourth and fifth digits: 12 34 56 7C 12 34.56 7+ The decimal point is not actually stored in memory, as the packed BCD storage format does not provide for it.