Search results
Results from the WOW.Com Content Network
In econometrics and statistics, the generalized method of moments (GMM) is a generic method for estimating parameters in statistical models.Usually it is applied in the context of semiparametric models, where the parameter of interest is finite-dimensional, whereas the full shape of the data's distribution function may not be known, and therefore maximum likelihood estimation is not applicable.
The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.
In statistics, a generalized estimating equation (GEE) is used to estimate the parameters of a generalized linear model with a possible unmeasured correlation between observations from different timepoints.
In econometrics, the Arellano–Bond estimator is a generalized method of moments estimator used to estimate dynamic models of panel data.It was proposed in 1991 by Manuel Arellano and Stephen Bond, [1] based on the earlier work by Alok Bhargava and John Denis Sargan in 1983, for addressing certain endogeneity problems. [2]
To estimate parameters of a conditional moment model, the statistician can derive an expectation function (defining "moment conditions") and use the generalized method of moments (GMM). However, there are infinitely many moment conditions that can be generated from a single model; optimal instruments provide the most efficient moment conditions.
In statistics, the method of estimating equations is a way of specifying how the parameters of a statistical model should be estimated. This can be thought of as a generalisation of many classical methods—the method of moments , least squares , and maximum likelihood —as well as some recent methods like M-estimators .
In econometrics, the method of simulated moments (MSM) (also called simulated method of moments [1]) is a structural estimation technique introduced by Daniel McFadden. [2] It extends the generalized method of moments to cases where theoretical moment functions cannot be evaluated directly, such as when moment functions involve high-dimensional integrals.
If the template has a separate documentation page (usually called "Template:template name/doc"), add [[Category:Formula One formatting and function templates]] to the <includeonly> section at the bottom of that page. Otherwise, add <noinclude>[[Category:Formula One formatting and function templates]]</noinclude>