enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kurtosis - Wikipedia

    en.wikipedia.org/wiki/Kurtosis

    The kurtosis is the fourth standardized moment, defined as ⁡ [] = ⁡ [()] = ⁡ [()] (⁡ [()]) =, where μ 4 is the fourth central moment and σ is the standard deviation.Several letters are used in the literature to denote the kurtosis.

  3. Skewness - Wikipedia

    en.wikipedia.org/wiki/Skewness

    Example distribution with positive skewness. These data are from experiments on wheat grass growth. In probability theory and statistics, skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean.

  4. Kurtosis risk - Wikipedia

    en.wikipedia.org/wiki/Kurtosis_risk

    Kurtosis risk applies to any kurtosis-related quantitative model that assumes the normal distribution for certain of its independent variables when the latter may in fact have kurtosis much greater than does the normal distribution. Kurtosis risk is commonly referred to as "fat tail" risk. The "fat tail" metaphor explicitly describes the ...

  5. Shape of a probability distribution - Wikipedia

    en.wikipedia.org/wiki/Shape_of_a_probability...

    The shape of a distribution may be considered either descriptively, using terms such as "J-shaped", or numerically, using quantitative measures such as skewness and kurtosis.

  6. Pearson distribution - Wikipedia

    en.wikipedia.org/wiki/Pearson_distribution

    The second is the traditional kurtosis, or fourth standardized moment: β 2 = γ 2 + 3. (Modern treatments define kurtosis γ 2 in terms of cumulants instead of moments, so that for a normal distribution we have γ 2 = 0 and β 2 = 3. Here we follow the historical precedent and use β 2.)

  7. Multimodal distribution - Wikipedia

    en.wikipedia.org/wiki/Multimodal_distribution

    The kurtosis is here defined to be the standardised fourth moment around the mean. The value of b lies between 0 and 1. [26] The logic behind this coefficient is that a bimodal distribution with light tails will have very low kurtosis, an asymmetric character, or both – all of which increase this coefficient. The formula for a finite sample ...

  8. Fat-tailed distribution - Wikipedia

    en.wikipedia.org/wiki/Fat-tailed_distribution

    A fat-tailed distribution is a probability distribution that exhibits a large skewness or kurtosis, relative to that of either a normal distribution or an exponential distribution. [when defined as?] In common usage, the terms fat-tailed and heavy-tailed are sometimes synonymous; fat-tailed is sometimes also defined as a subset of heavy-tailed ...

  9. Beta distribution - Wikipedia

    en.wikipedia.org/wiki/Beta_distribution

    The plot of excess kurtosis as a function of the variance and the mean shows that the minimum value of the excess kurtosis (−2, which is the minimum possible value for excess kurtosis for any distribution) is intimately coupled with the maximum value of variance (1/4) and the symmetry condition: the mean occurring at the midpoint (μ = 1/2).