Search results
Results from the WOW.Com Content Network
Level of measurement or scale of measure is a classification that describes the nature of information within the values assigned to variables. [1] Psychologist Stanley Smith Stevens developed the best-known classification with four levels, or scales, of measurement: nominal , ordinal , interval , and ratio .
Ordinal data is a categorical, statistical data type where the variables have natural, ordered categories and the distances between the categories are not known. [1]: 2 These data exist on an ordinal scale, one of four levels of measurement described by S. S. Stevens in 1946.
The concept of data type is similar to the concept of level of measurement, but more specific. For example, count data requires a different distribution (e.g. a Poisson distribution or binomial distribution) than non-negative real-valued data require, but both fall under the same level of measurement (a ratio scale). Various attempts have been ...
Likert scale data can, in principle, be used as a basis for obtaining interval level estimates on a continuum by applying the polytomous Rasch model, when data can be obtained that fit this model. In addition, the polytomous Rasch model permits testing of the hypothesis that the statements reflect increasing levels of an attitude or trait, as ...
Some data are measured at the interval level. Numbers indicate the magnitude of difference between items, but there is no absolute zero point. A good example is a Fahrenheit/Celsius temperature scale where the differences between numbers matter, but placement of zero does not. Some data are measured at the ratio level. Numbers indicate ...
The measurement of a property may be categorized by the following criteria: type, magnitude, unit, and uncertainty. [citation needed] They enable unambiguous comparisons between measurements. The level of measurement is a taxonomy for the methodological character of a comparison. For example, two states of a property may be compared by ratio ...
Various attempts have been made to produce a taxonomy of levels of measurement. The psychophysicist Stanley Smith Stevens defined nominal, ordinal, interval, and ratio scales. Nominal measurements do not have meaningful rank order among values, and permit any one-to-one (injective) transformation.
More precisely, a study's defined significance level, denoted by , is the probability of the study rejecting the null hypothesis, given that the null hypothesis is true; [4] and the p-value of a result, , is the probability of obtaining a result at least as extreme, given that the null hypothesis is true. [5]