Search results
Results from the WOW.Com Content Network
Orthogonal (or perpendicular) – at a right angle (at the point of intersection). Elevation – along a curve from a point on the horizon to the zenith, directly overhead. Depression – along a curve from a point on the horizon to the nadir, directly below. Vertical – spanning the height of a body. Longitudinal – spanning the length of a ...
The line segments AB and CD are orthogonal to each other. In mathematics, orthogonality is the generalization of the geometric notion of perpendicularity.Whereas perpendicular is typically followed by to when relating two lines to one another (e.g., "line A is perpendicular to line B"), [1] orthogonal is commonly used without to (e.g., "orthogonal lines A and B").
For example, the three-dimensional Cartesian coordinates (x, y, z) is an orthogonal coordinate system, since its coordinate surfaces x = constant, y = constant, and z = constant are planes that meet at right angles to one another, i.e., are perpendicular. Orthogonal coordinates are a special but extremely common case of curvilinear coordinates.
A Cartesian coordinate system in two dimensions (also called a rectangular coordinate system or an orthogonal coordinate system [8]) is defined by an ordered pair of perpendicular lines (axes), a single unit of length for both axes, and an orientation for each axis. The point where the axes meet is taken as the origin for both, thus turning ...
Perpendicular intersections can happen between two lines (or two line segments), between a line and a plane, and between two planes. Perpendicularity is one particular instance of the more general mathematical concept of orthogonality ; perpendicularity is the orthogonality of classical geometric objects.
In Euclidean space, two vectors are orthogonal if and only if their dot product is zero, i.e. they make an angle of 90° (radians), or one of the vectors is zero. [4] Hence orthogonality of vectors is an extension of the concept of perpendicular vectors to spaces of any dimension.
The concept of perpendicular distance may be generalized to orthogonal distance, between more abstract non-geometric orthogonal objects, as in linear algebra (e.g., principal components analysis); normal distance, involving a surface normal, between an arbitrary point and its foot on the surface.
In the mathematical fields of linear algebra and functional analysis, the orthogonal complement of a subspace of a vector space equipped with a bilinear form is the set of all vectors in that are orthogonal to every vector in .