Search results
Results from the WOW.Com Content Network
In electrical circuits, reactance is the opposition presented to alternating current by inductance and capacitance. [1] Along with resistance, it is one of two elements of impedance; however, while both elements involve transfer of electrical energy, no dissipation of electrical energy as heat occurs in reactance; instead, the reactance stores energy until a quarter-cycle later when the energy ...
The per-phase reactance can be determined in a mental experiment where the rotor poles are perfectly aligned with a specific angle of the phase field in the armature (0° for , 90° for the ). In this case, the reactance X will be related with the flux linkage Ψ {\displaystyle \Psi } and the phase current I as X = ω Ψ I {\displaystyle X ...
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
where gives the reactance of the inductor at resonance. The numerator implies that in the limit as ω → ± ω 0 , the total impedance Z will be zero and otherwise non-zero. Therefore the series LC circuit, when connected in series with a load, will act as a band-pass filter having zero impedance at the resonant frequency of the LC circuit.
The reactance and susceptance are only reciprocals in the absence of either resistance or conductance (only if either R = 0 or G = 0, either of which implies the other, as long as Z ≠ 0, or equivalently as long as Y ≠ 0).
Reactance may refer to: Electrical reactance , the opposition to a change in voltage due to capacitance (capacitive reactance) or in current due to inductance (inductive reactance); the imaginary component of AC impedance
Foster's reactance theorem is an important theorem in the fields of electrical network analysis and synthesis. The theorem states that the reactance of a passive, lossless two-terminal ( one-port ) network always strictly monotonically increases with frequency.
The sum of resistance and reactance is called impedance. Electrical impedance is commonly represented by the variable Z and measured in ohms at a specific frequency. Electrical impedance is computed as the vector sum of electrical resistance, capacitive reactance, and inductive reactance.