enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shear strength - Wikipedia

    en.wikipedia.org/wiki/Shear_strength

    This is only the average stress, actual stress distribution is not uniform. In real world applications, this equation only gives an approximation and the maximum shear stress would be higher. Stress is not often equally distributed across a part so the shear strength would need to be higher to account for the estimate. [2]

  3. Roark's Formulas for Stress and Strain - Wikipedia

    en.wikipedia.org/wiki/Roark's_Formulas_for_Stress...

    The book covers various subjects, including bearing and shear stress, experimental stress analysis, stress concentrations, material behavior, and stress and strain measurement. It also features expanded tables and cases, improved notations and figures within the tables, consistent table and equation numbering, and verification of correction ...

  4. Tsai-Hill failure criterion - Wikipedia

    en.wikipedia.org/wiki/Tsai-Hill_failure_criterion

    is the allowable in-plane shear strength of the ply between the longitudinal and the transversal directions The Tsai hill criterion is interactive , i.e. the stresses in different directions are not decoupled and do affect the failure simultaneously. [ 2 ]

  5. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.

  6. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_analysis

    Stress analysis is specifically concerned with solid objects. The study of stresses in liquids and gases is the subject of fluid mechanics.. Stress analysis adopts the macroscopic view of materials characteristic of continuum mechanics, namely that all properties of materials are homogeneous at small enough scales.

  7. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    When a part is subjected to a cyclic stress, also known as stress range (Sr), it has been observed that the failure of the part occurs after a number of stress reversals (N) even if the magnitude of the stress range is below the material's yield strength. Generally, higher the range stress, the fewer the number of reversals needed for failure.

  8. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    Strength depends upon material properties. The strength of a material depends on its capacity to withstand axial stress, shear stress, bending, and torsion.The strength of a material is measured in force per unit area (newtons per square millimetre or N/mm², or the equivalent megapascals or MPa in the SI system and often pounds per square inch psi in the United States Customary Units system).

  9. Yield (engineering) - Wikipedia

    en.wikipedia.org/wiki/Yield_(engineering)

    The applied stress to overcome the resistance of a perfect lattice to shear is the theoretical yield strength, τ max. The stress displacement curve of a plane of atoms varies sinusoidally as stress peaks when an atom is forced over the atom below and then falls as the atom slides into the next lattice point. [18]