Search results
Results from the WOW.Com Content Network
Visual understanding of multiplication by the transpose of a matrix. If A is an orthogonal matrix and B is its transpose, the ij-th element of the product AA T will vanish if i≠j, because the i-th row of A is orthogonal to the j-th row of A. An orthogonal matrix is the real specialization of a unitary matrix, and thus always a normal matrix.
Equivalently, it is the group of n × n orthogonal matrices, where the group operation is given by matrix multiplication (an orthogonal matrix is a real matrix whose inverse equals its transpose). The orthogonal group is an algebraic group and a Lie group. It is compact. The orthogonal group in dimension n has two connected components.
A square matrix whose transpose is equal to its inverse is called an orthogonal matrix; that is, A is orthogonal if =. A square complex matrix whose transpose is equal to its conjugate inverse is called a unitary matrix; that is, A is unitary if
Pre-multiplying an n-row matrix M by a permutation matrix P, forming PM, results in permuting the rows of M, while post-multiplying an n-column matrix M, forming MP, permutes the columns of M. Every permutation matrix P is orthogonal , with its inverse equal to its transpose : P − 1 = P T {\displaystyle P^{-1}=P^{\mathsf {T}}} .
Orthogonal matrix: A matrix whose inverse is equal to its transpose, A −1 = A T. They form the orthogonal group. Orthonormal matrix: A matrix whose columns are orthonormal vectors. Partially Isometric matrix: A matrix that is an isometry on the orthogonal complement of its kernel. Equivalently, a matrix that satisfies AA * A = A.
The conjugate transpose of a matrix with real entries reduces to the transpose of , as the conjugate of a real number is the number itself. The conjugate transpose can be motivated by noting that complex numbers can be usefully represented by 2 × 2 {\displaystyle 2\times 2} real matrices, obeying matrix addition and multiplication:
An orthogonal matrix is a square matrix with real entries whose columns and rows are orthogonal unit vectors (that is, orthonormal vectors). Equivalently, a matrix A is orthogonal if its transpose is equal to its inverse: =, which entails
One can always write = where V is a real orthogonal matrix, is the transpose of V, and S is a block upper triangular matrix called the real Schur form. The blocks on the diagonal of S are of size 1×1 (in which case they represent real eigenvalues) or 2×2 (in which case they are derived from complex conjugate eigenvalue pairs).