Search results
Results from the WOW.Com Content Network
For division to always yield one number rather than an integer quotient plus a remainder, the natural numbers must be extended to rational numbers or real numbers. In these enlarged number systems, division is the inverse operation to multiplication, that is a = c / b means a × b = c, as long as b is not zero.
Decimal numbers are not divided directly, the dividend and divisor are multiplied by a power of ten so that the division involves two whole numbers. Therefore, if one were dividing 12,7 by 0,4 (commas being used instead of decimal points), the dividend and divisor would first be changed to 127 and 4, and then the division would proceed as above.
In the division of 43 by 5, we have: 43 = 8 × 5 + 3, so 3 is the least positive remainder. We also have that: 43 = 9 × 5 − 2, and −2 is the least absolute remainder. These definitions are also valid if d is negative, for example, in the division of 43 by −5, 43 = (−8) × (−5) + 3, and 3 is the least positive remainder, while,
Loosely speaking, since division by zero has no meaning (is undefined) in the whole number setting, this remains true as the setting expands to the real or even complex numbers. [22] As the realm of numbers to which these operations can be applied expands there are also changes in how the operations are viewed.
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the dividend) by another (the divisor), in a way that produces an integer quotient and a natural number remainder strictly smaller than the absolute value of the divisor. A fundamental property is that the quotient and the remainder ...