Search results
Results from the WOW.Com Content Network
The conjectures in following list were not necessarily generally accepted as true before being disproved. Atiyah conjecture (not a conjecture to start with) Borsuk's conjecture; Chinese hypothesis (not a conjecture to start with) Doomsday conjecture; Euler's sum of powers conjecture; Ganea conjecture; Generalized Smith conjecture; Hauptvermutung
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. [ 1 ] [ 2 ] [ 3 ] Some conjectures, such as the Riemann hypothesis or Fermat's conjecture (now a theorem , proven in 1995 by Andrew Wiles ), have shaped much of mathematical history as new areas of mathematics are developed in ...
A conjecture is a proposition that is unproven. Conjectures are related to hypotheses , which in science are empirically testable conjectures. In mathematics , a conjecture is an unproven proposition that appears correct.
The Conjecture lives in the math discipline known as Dynamical Systems, or the study of situations that change over time in semi-predictable ways. It looks like a simple, innocuous question, but ...
The Erdős–Turán conjecture on additive bases of natural numbers. A conjecture on quickly growing integer sequences with rational reciprocal series. A conjecture with Norman Oler [2] on circle packing in an equilateral triangle with a number of circles one less than a triangular number. The minimum overlap problem to estimate the limit of M(n).
The conjecture is that there is a simple way to tell whether such equations have a finite or infinite number of rational solutions. More specifically, the Millennium Prize version of the conjecture is that, if the elliptic curve E has rank r, then the L-function L(E, s) associated with it vanishes to order r at s = 1.
The conjecture is named after Paul Erdős and Ernst G. Straus, who formulated it in 1948, but it is connected to much more ancient mathematics; sums of unit fractions, like the one in this problem, are known as Egyptian fractions, because of their use in ancient Egyptian mathematics. The Erdős–Straus conjecture is one of many conjectures by ...
Froebel star: November 2013: A line integral is an integral where the function to be integrated, be it a scalar field as here or a vector field, is evaluated along a curve.The value of the line integral is the sum of values of the field at all points on the curve, weighted by some scalar function on the curve (commonly arc length or, for a vector field, the scalar product of the vector field ...