enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Langley's Adventitious Angles - Wikipedia

    en.wikipedia.org/wiki/Langley's_Adventitious_Angles

    adventitious quadrangles problem. A quadrilateral such as BCEF is called an adventitious quadrangle when the angles between its diagonals and sides are all rational angles, angles that give rational numbers when measured in degrees or other units for which the whole circle is a rational number. Numerous adventitious quadrangles beyond the one ...

  3. Ceva's theorem - Wikipedia

    en.wikipedia.org/wiki/Ceva's_theorem

    Ceva's theorem, case 1: the three lines are concurrent at a point O inside ABC Ceva's theorem, case 2: the three lines are concurrent at a point O outside ABC. In Euclidean geometry, Ceva's theorem is a theorem about triangles.

  4. Generalized trigonometry - Wikipedia

    en.wikipedia.org/wiki/Generalized_trigonometry

    Ordinary trigonometry studies triangles in the Euclidean plane ⁠ ⁠.There are a number of ways of defining the ordinary Euclidean geometric trigonometric functions on real numbers, for example right-angled triangle definitions, unit circle definitions, series definitions [broken anchor], definitions via differential equations [broken anchor], and definitions using functional equations.

  5. Droz-Farny line theorem - Wikipedia

    en.wikipedia.org/wiki/Droz-Farny_line_theorem

    Second generalization: Let a conic S and a point P on the plane. Construct three lines d a , d b , d c through P such that they meet the conic at A, A'; B, B' ; C, C' respectively. Let D be a point on the polar of point P with respect to (S) or D lies on the conic (S).

  6. Pascal's simplex - Wikipedia

    en.wikipedia.org/wiki/Pascal's_simplex

    Each face (orange grid) is Pascal's 2-simplex (Pascal's triangle). Arrows show derivation of two example terms. Arrows show derivation of two example terms. In mathematics , Pascal's simplex is a generalisation of Pascal's triangle into arbitrary number of dimensions , based on the multinomial theorem .

  7. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    Generalization for arbitrary triangles, green area = blue area Construction for proof of parallelogram generalization. Pappus's area theorem is a further generalization, that applies to triangles that are not right triangles, using parallelograms on the three sides in place of squares (squares are a special case, of course). The upper figure ...

  8. Brahmagupta's formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_formula

    This formula generalizes Heron's formula for the area of a triangle. A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula.

  9. Pappus's area theorem - Wikipedia

    en.wikipedia.org/wiki/Pappus's_area_theorem

    Pappus's area theorem describes the relationship between the areas of three parallelograms attached to three sides of an arbitrary triangle. The theorem, which can also be thought of as a generalization of the Pythagorean theorem, is named after the Greek mathematician Pappus of Alexandria (4th century AD), who discovered it.