Search results
Results from the WOW.Com Content Network
The specific heat capacity of a substance, usually denoted by or , is the heat capacity of a sample of the substance, divided by the mass of the sample: [10] = =, where represents the amount of heat needed to uniformly raise the temperature of the sample by a small increment .
Calcium chloride was apparently discovered in the 15th century but wasn't studied properly until the 18th century. [11] It was historically called "fixed sal ammoniac" (Latin: sal ammoniacum fixum [12]) because it was synthesized during the distillation of ammonium chloride with lime and was nonvolatile (while the former appeared to sublime); in more modern times (18th-19th cc.) it was called ...
Table of specific heat capacities at 25 °C (298 K) unless otherwise noted. [citation needed] Notable minima and maxima are shown in maroon. Substance Phase Isobaric mass heat capacity c P J⋅g −1 ⋅K −1 Molar heat capacity, C P,m and C V,m J⋅mol −1 ⋅K −1 Isobaric volumetric heat capacity C P,v J⋅cm −3 ⋅K −1 Isochoric ...
The Kopp–Neumann law, named for Kopp and Franz Ernst Neumann, is a common approach for determining the specific heat C (in J·kg −1 ·K −1) of compounds using the following equation: [3] = =, where N is the total number of compound constituents, and C i and f i denote the specific heat and mass fraction of the i-th constituent. This law ...
David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition. CRC Press. Boca Raton, Florida, 2003; Section 4, Properties of the Elements and Inorganic Compounds; Heat Capacity of the Elements at 25 °C
Molar specific heat capacity (isochoric) C nV = / J⋅K⋅ −1 mol −1: ML 2 T −2 Θ −1 N −1: Specific latent heat: L = / J⋅kg −1: L 2 T −2: Ratio of isobaric to isochoric heat capacity, heat capacity ratio, adiabatic index, Laplace coefficient
The corresponding expression for the ratio of specific heat capacities remains the same since the thermodynamic system size-dependent quantities, whether on a per mass or per mole basis, cancel out in the ratio because specific heat capacities are intensive properties. Thus:
The SI unit of heat capacity is joule per kelvin (J/K). Heat capacity is an extensive property. The corresponding intensive property is the specific heat capacity, found by dividing the heat capacity of an object by its mass. Dividing the heat capacity by the amount of substance in moles yields its molar heat capacity.