Search results
Results from the WOW.Com Content Network
Let () be a probability distribution on the states of nature. From a Bayesian point of view, we would regard it as a prior distribution.That is, it is our believed probability distribution on the states of nature, prior to observing data.
In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of possible outcomes for an experiment. [1] [2] It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events (subsets of the sample space). [3]
In probability theory, an event is a set of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. [1] A single outcome may be an element of many different events, [2] and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. [3]
If the state space is the integers or natural numbers, then the stochastic process is called a discrete or integer-valued stochastic process. If the state space is the real line, then the stochastic process is referred to as a real-valued stochastic process or a process with continuous state space.
The state is periodic if >; otherwise = and the state is aperiodic. A state i is said to be transient if, starting from i, there is a non-zero probability that the chain will never return to i. It is called recurrent (or persistent) otherwise. [48] For a recurrent state i, the mean hitting time is defined as:
In probability theory, the Fourier transform of the probability distribution of a real-valued random variable is closely connected to the characteristic function of that variable, which is defined as the expected value of , as a function of the real variable (the frequency parameter of the Fourier transform).
The probability density function (PDF) for a particle in one dimension is found by solving the one-dimensional diffusion equation. (This equation states that the position probability density diffuses outward over time. It is analogous to say, cream in a cup of coffee if the cream was all contained within some small location initially.
Deming held that the disjoint nature of population and sampling frame was inherently problematic once the existence of special-cause variation was admitted, rejecting the general use of probability and conventional statistics in such situations. He articulated the difficulty as the distinction between analytic and enumerative statistical studies.