Search results
Results from the WOW.Com Content Network
The Weiss magneton was experimentally derived in 1911 as a unit of magnetic moment equal to 1.53 × 10 −24 joules per tesla, which is about 20% of the Bohr magneton. In the summer of 1913, the values for the natural units of atomic angular momentum and magnetic moment were obtained by the Danish physicist Niels Bohr as a consequence of his ...
The value of the electron magnetic moment (symbol μ e) is −9.284 764 6917 (29) × 10 −24 J⋅T −1. [1] In units of the Bohr magneton ( μ B ), it is −1.001 159 652 180 59 (13) μ B , [ 2 ] a value that was measured with a relative accuracy of 1.3 × 10 −13 .
The magnetic moment of the electron is =, where μ B is the Bohr magneton, S is electron spin, and the g-factor g S is 2 according to Dirac's theory, but due to quantum electrodynamic effects it is slightly larger in reality: 2.002 319 304 36.
Thirdly, the Landé g-factor, g J, is defined by | | = | | where μ J is the total magnetic moment resulting from both spin and orbital angular momentum of an electron, J = L + S is its total angular momentum, and μ B is the Bohr magneton. The value of g J is related to g L and g s by a quantum-mechanical argument; see the article Landé g-factor.
Here is the Bohr magneton and is the nuclear magneton. This last approximation is justified because μ N {\displaystyle \mu _{N}} is smaller than μ B {\displaystyle \mu _{B}} by the ratio of the electron mass to the proton mass.
The best available measurement for the value of the magnetic moment of the neutron is μ n = −1.913 042 76 (45) μ N. [3] [4] Here, μ N is the nuclear magneton, a standard unit for the magnetic moments of nuclear components, and μ B is the Bohr magneton, both being physical constants.
The above classical relation does not hold, giving the wrong result by the absolute value of the electron's g-factor, which is denoted g e: = | | =, where μ B is the Bohr magneton. The gyromagnetic ratio due to electron spin is twice that due to the orbiting of an electron.
List of chemical elements — with basic properties like standard atomic weight, m.p., b.p., abundance; Abundance of the chemical elements; Abundances of the elements (data page) — Earth's crust, sea water, Sun and Solar System