enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heaviside step function - Wikipedia

    en.wikipedia.org/wiki/Heaviside_step_function

    The Heaviside step function, or the unit step function, usually denoted by H or θ (but sometimes u, 1 or 𝟙), is a step function named after Oliver Heaviside, the value of which is zero for negative arguments and one for positive arguments. Different conventions concerning the value H(0) are in use.

  3. Step function - Wikipedia

    en.wikipedia.org/wiki/Step_function

    The Heaviside step function is an often-used step function.. A constant function is a trivial example of a step function. Then there is only one interval, =. The sign function sgn(x), which is −1 for negative numbers and +1 for positive numbers, and is the simplest non-constant step function.

  4. Step potential - Wikipedia

    en.wikipedia.org/wiki/Step_potential

    The step potential is simply the product of V 0, the height of the barrier, and the Heaviside step function: = {, <, The barrier is positioned at x = 0, though any position x 0 may be chosen without changing the results, simply by shifting position of the step by −x 0.

  5. Laplacian of the indicator - Wikipedia

    en.wikipedia.org/wiki/Laplacian_of_the_indicator

    The function 1 x>0 equals 1 on the positive halfline and zero otherwise, and is also known as the Heaviside step function. Formally, the Dirac δ -function and its derivative (i.e. the one-dimensional surface delta prime function ) can be viewed as the first and second derivative of the Heaviside step function, i.e. ∂ x 1 x >0 and ∂ x 2 1 x ...

  6. Rectangular function - Wikipedia

    en.wikipedia.org/wiki/Rectangular_function

    Plot of normalized ⁡ function (i.e. ⁡ ()) with its spectral frequency components.. The unitary Fourier transforms of the rectangular function are [2] ⁡ = ⁡ = ⁡ (), using ordinary frequency f, where is the normalized form [10] of the sinc function and ⁡ = ⁡ (/) / = ⁡ (/), using angular frequency , where is the unnormalized form of the sinc function.

  7. Step response - Wikipedia

    en.wikipedia.org/wiki/Step_response

    The step response of a system in a given initial state consists of the time evolution of its outputs when its control inputs are Heaviside step functions. In electronic engineering and control theory , step response is the time behaviour of the outputs of a general system when its inputs change from zero to one in a very short time.

  8. List of Laplace transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_Laplace_transforms

    The following functions and variables are used in the table below: δ represents the Dirac delta function. u(t) represents the Heaviside step function. Literature may refer to this by other notation, including () or (). Γ(z) represents the Gamma function. γ is the Euler–Mascheroni constant. t is a real number.

  9. Indicator function - Wikipedia

    en.wikipedia.org/wiki/Indicator_function

    Thus the derivative of the Heaviside step function can be seen as the inward normal derivative at the boundary of the domain given by the positive half-line. In higher dimensions, the derivative naturally generalises to the inward normal derivative, while the Heaviside step function naturally generalises to the indicator function of some domain D.