Search results
Results from the WOW.Com Content Network
Process optimization is the discipline of adjusting a process so as to make the best or most effective use of some specified set of parameters without violating some constraint. Common goals are minimizing cost and maximizing throughput and/or efficiency. Process optimization is one of the major quantitative tools in industrial decision making.
Design optimization applies the methods of mathematical optimization to design problem formulations and it is sometimes used interchangeably with the term engineering optimization. When the objective function f is a vector rather than a scalar , the problem becomes a multi-objective optimization one.
Derivative-free optimization is a subject of mathematical optimization. This method is applied to a certain optimization problem when its derivatives are unavailable or unreliable. Derivative-free methods establish a model based on sample function values or directly draw a sample set of function values without exploiting a detailed model.
Optimal designs can accommodate multiple types of factors, such as process, mixture, and discrete factors. Designs can be optimized when the design-space is constrained, for example, when the mathematical process-space contains factor-settings that are practically infeasible (e.g. due to safety concerns).
The process maturity enables adaptions to particular projects without measurable losses of quality or deviations from specifications. Process Capability is established from this level. (Example - surgeon performing an operation hundreds of times with levels of negative outcome approaching zero). Level 5 - Optimizing (Efficient)
Operations research (OR) encompasses the development and the use of a wide range of problem-solving techniques and methods applied in the pursuit of improved decision-making and efficiency, such as simulation, mathematical optimization, queueing theory and other stochastic-process models, Markov decision processes, econometric methods, data ...
Process–architecture–optimization is a development model for central processing units (CPUs) that Intel adopted in 2016. Under this three-phase (three-year) model, every microprocessor die shrink is followed by a microarchitecture change and then by one or more optimizations.
The constrained-optimization problem (COP) is a significant generalization of the classic constraint-satisfaction problem (CSP) model. [1] COP is a CSP that includes an objective function to be optimized. Many algorithms are used to handle the optimization part.