Search results
Results from the WOW.Com Content Network
The overall process of oxidizing glucose to carbon dioxide, the combination of pathways 1 and 2, known as cellular respiration, produces about 30 equivalents of ATP from each molecule of glucose. [20] ATP production by a non-photosynthetic aerobic eukaryote occurs mainly in the mitochondria, which comprise nearly 25% of the volume of a typical ...
Molecular structure of adenosine triphosphate (ATP) An ATP-binding motif is a 250-residue sequence within an ATP-binding protein’s primary structure. The binding motif is associated with a protein’s structure and/or function. [1] ATP is a molecule of energy, and can be a coenzyme, involved in a number of biological reactions.
The chemical structure of adenosine triphosphate. Date: 16 August 2007: Source: Self-made in bkchem; edited in perl. Author: Mysid: Other versions: Derivative works of this file: ATP structure revised.png: SVG development
ATP synthase is an enzyme that catalyzes the formation of the energy storage molecule adenosine triphosphate (ATP) using adenosine diphosphate (ADP) and inorganic phosphate (P i). ATP synthase is a molecular machine. The overall reaction catalyzed by ATP synthase is: ADP + P i + 2H + out ⇌ ATP + H 2 O + 2H + in
According to some newer sources, the ATP yield during aerobic respiration is not 36–38, but only about 30–32 ATP molecules / 1 molecule of glucose [12], because: ATP : NADH+H + and ATP : FADH 2 ratios during the oxidative phosphorylation appear to be not 3 and 2, but 2.5 and 1.5 respectively.
The alpha/A and beta/B subunits can each be divided into three regions, or domains, centred on the ATP-binding pocket, and based on structure and function. The central domain contains the nucleotide-binding residues that make direct contact with the ADP/ATP molecule. [8]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
Structure of ATP Structure of ADP Four possible resonance structures for inorganic phosphate. ATP hydrolysis is the catabolic reaction process by which chemical energy that has been stored in the high-energy phosphoanhydride bonds in adenosine triphosphate (ATP) is released after splitting these bonds, for example in muscles, by producing work in the form of mechanical energy.