Search results
Results from the WOW.Com Content Network
propositional logic, Boolean algebra, Heyting algebra: is false when A is true and B is false but true otherwise. may mean the same as (the symbol may also indicate the domain and codomain of a function; see table of mathematical symbols).
In mathematics and mathematical logic, Boolean algebra is a branch of algebra. ... then x + 1 = 4" depends on the meanings of such symbols as + and 1, ...
In high-level computer programming and digital electronics, logical conjunction is commonly represented by an infix operator, usually as a keyword such as "AND", an algebraic multiplication, or the ampersand symbol & (sometimes doubled as in &&). Many languages also provide short-circuit control structures corresponding to logical conjunction.
There are three symbols for AND gates: the American (ANSI or 'military') symbol and the IEC ('European' or 'rectangular') symbol, as well as the deprecated DIN symbol. Additional inputs can be added as needed. For more information see Logic gate symbols article. It can also be denoted as symbol "^" or "&".
Conjunction: the symbol appeared in Heyting in 1930 [3] (compare to Peano's use of the set-theoretic notation of intersection [7]); the symbol & appeared at least in Schönfinkel in 1924; [8] the symbol comes from Boole's interpretation of logic as an elementary algebra. Disjunction: the symbol appeared in Russell in 1908 [6] (compare to Peano ...
A Boolean algebra is a set A, equipped with two binary operations ∧ (called "meet" or "and"), ∨ (called "join" or "or"), a unary operation ¬ (called "complement" or "not") and two elements 0 and 1 in A (called "bottom" and "top", or "least" and "greatest" element, also denoted by the symbols ⊥ and ⊤, respectively), such that for all elements a, b and c of A, the following axioms hold: [2]
In logic and mathematics, statements and are said to be logically equivalent if they have the same truth value in every model. [1] The logical equivalence of and is sometimes expressed as , ::, , or , depending on the notation being used.
The stroke is named after Henry Maurice Sheffer, who in 1913 published a paper in the Transactions of the American Mathematical Society [10] providing an axiomatization of Boolean algebras using the stroke, and proved its equivalence to a standard formulation thereof by Huntington employing the familiar operators of propositional logic (AND, OR, NOT).