Search results
Results from the WOW.Com Content Network
In geometry, a golden rectangle is a rectangle with side lengths in golden ratio +:, or :, with approximately equal to 1.618 or 89/55. Golden rectangles exhibit a special form of self-similarity : if a square is added to the long side, or removed from the short side, the result is a golden rectangle as well.
A golden rectangle—that is, a rectangle with an aspect ratio of —may be cut into a square and a smaller rectangle with the same aspect ratio. The golden ratio has been used to analyze the proportions of natural objects and artificial systems such as financial markets , in some cases based on dubious fits to data. [ 8 ]
The root-3 rectangle is also called sixton, [6] and its short and longer sides are proportionally equivalent to the side and diameter of a hexagon. [7] Since 2 is the square root of 4, the root-4 rectangle has a proportion 1:2, which means that it is equivalent to two squares side-by-side. [7] The root-5 rectangle is related to the golden ratio ...
For example, the aspect ratio of a rectangle is the ratio of its longer side to its shorter side—the ratio of width to height, [1] [2] when the rectangle is oriented as a "landscape". The aspect ratio is most often expressed as two integer numbers separated by a colon (x:y), less commonly as a simple or decimal fraction. The values x and y do ...
Given a rectangle with a longer side, x, and a shorter side, y, ensuring that its aspect ratio, x / y , will be the same as that of a rectangle half its size, y / x/2 , which means that x / y = y / x/2 , which reduces to x / y = √ 2; in other words, an aspect ratio of 1: √ 2.
The following 17 pages use this file: Fibonacci sequence; Golden-section search; Golden angle; Golden ratio; Golden ratio base; Golden rectangle; Golden rhombus
Construction of a golden rectangle Construct a simple square; Draw a line from the midpoint of one side of the square to an opposite corner; Use that line as the radius to draw an arc that defines the height of the rectangle; Use the endpoints of the arc to complete the rectangle; The proportions of the resulting rectangle is φ or
Pages in category "Golden ratio" The following 26 pages are in this category, out of 26 total. ... Golden rectangle; Golden rhombus; Golden-section search;