Search results
Results from the WOW.Com Content Network
The core produces almost all of the Sun's heat via fusion; the rest of the star is heated by the outward transfer of heat from the core. The energy produced by fusion in the core, except a small part carried out by neutrinos , must travel through many successive layers to the solar photosphere before it escapes into space as sunlight , or else ...
The Sun's atmosphere is composed of five layers: the photosphere, the chromosphere, the transition region, the corona, and the heliosphere. The coolest layer of the Sun is a temperature minimum region extending to about 500 km above the photosphere, and has a temperature of about 4,100 K. [77]
In the Sun, the region between the solar core at 0.2 of the Sun's radius and the outer convection zone at 0.71 of the Sun's radius is referred to as the radiation zone, although the core is also a radiative region. [1] The convection zone and the radiative zone are divided by the tachocline, another part of the Sun.
The heliosphere is the magnetosphere, astrosphere, and outermost atmospheric layer of the Sun.It takes the shape of a vast, tailed bubble-like region of space.In plasma physics terms, it is the cavity formed by the Sun in the surrounding interstellar medium.
Different layers of the stars transport heat up and outwards in different ways, primarily convection and radiative transfer, but thermal conduction is important in white dwarfs. Convection is the dominant mode of energy transport when the temperature gradient is steep enough so that a given parcel of gas within the star will continue to rise if ...
The red color of the chromosphere could be seen during the solar eclipse of August 11, 1999.. The density of the Sun's chromosphere decreases exponentially with distance from the center of the Sun by a factor of roughly 10 million, from about 2 × 10 −4 kg/m 3 at the chromosphere's inner boundary to under 1.6 × 10 −11 kg/m 3 at the outer boundary. [7]
The surface abundance of Li on the Sun is 140 times less than the protosolar value (i.e. the primordial abundance at the Sun's birth), [18] yet the temperature at the base of the surface convective zone is not hot enough to burn – and hence deplete – Li. [19] This is known as the solar lithium problem.
Below, gravity tends to dominate the shape of most features, so that the Sun may often be described in terms of layers and horizontal features (like sunspots); above, dynamic forces dominate the shape of most features, so that the transition region itself is not a well-defined layer at a particular altitude.