Search results
Results from the WOW.Com Content Network
The chemical energy released in the formation of non-covalent interactions is typically on the order of 1–5 kcal/mol (1000–5000 calories per 6.02 × 10 23 molecules). [2] Non-covalent interactions can be classified into different categories, such as electrostatic, π-effects, van der Waals forces, and hydrophobic effects. [3] [2]
Irreversible covalent – a chemical bond is formed in which the product is thermodynamically much more stable than the reactants such that the reverse reaction does not take place. Bound molecules are sometimes called a "molecular complex"—the term generally refers to non-covalent associations. [ 2 ]
Molecular self-assembly is a key concept in supramolecular chemistry. [6] [7] [8] This is because assembly of molecules in such systems is directed through non-covalent interactions (e.g., hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, pi-stacking interactions, and/or electrostatic) as well as electromagnetic interactions.
In chemistry, a pnictogen bond (PnB) is a non-covalent interaction, occurring where there is a net attractive force between an electrophilic region on a 'donor' pnictogen atom (Pn) in a molecule, and a nucleophilic region on an 'acceptor' atom, which may be in the same or another molecule. [1]
Host–guest chemistry encompasses the idea of molecular recognition and interactions through non-covalent bonding. Non-covalent bonding is critical in maintaining the 3D structure of large molecules, such as proteins and is involved in many biological processes in which large molecules bind specifically but transiently to one another.
In chemistry, π-effects or π-interactions are a type of non-covalent interaction that involves π systems.Just like in an electrostatic interaction where a region of negative charge interacts with a positive charge, the electron-rich π system can interact with a metal (cationic or neutral), an anion, another molecule and even another π system. [1]
In chemistry, a metallophilic interaction is defined as a type of non-covalent attraction between heavy metal atoms. The atoms are often within Van der Waals distance of each other and are about as strong as hydrogen bonds. [1] The effect can be intramolecular or intermolecular.
MAs of macromolecules are held in their defined forms by non-covalent intermolecular interactions (rather than covalent bonds), and can be in either non-repeating structures (e.g., as in the ribosome (image) and cell membrane architectures), or in repeating linear, circular, spiral, or other patterns (e.g., as in actin filaments and the ...