enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cantor's theorem - Wikipedia

    en.wikipedia.org/wiki/Cantor's_theorem

    Much more significant is Cantor's discovery of an argument that is applicable to any set, and shows that the theorem holds for infinite sets also. As a consequence, the cardinality of the real numbers, which is the same as that of the power set of the integers, is strictly larger than the cardinality of the integers; see Cardinality of the ...

  3. Power set - Wikipedia

    en.wikipedia.org/wiki/Power_set

    An indicator function or a characteristic function of a subset A of a set S with the cardinality | S | = n is a function from S to the two-element set {0, 1}, denoted as I A : S → {0, 1}, and it indicates whether an element of S belongs to A or not; If x in S belongs to A, then I A (x) = 1, and 0 otherwise.

  4. Equinumerosity - Wikipedia

    en.wikipedia.org/wiki/Equinumerosity

    In some other systems of axiomatic set theory, for example in Von Neumann–Bernays–Gödel set theory and Morse–Kelley set theory, relations are extended to classes. A set A is said to have cardinality smaller than or equal to the cardinality of a set B, if there exists a one-to-one function (an injection) from A into B.

  5. Cardinality - Wikipedia

    en.wikipedia.org/wiki/Cardinality

    Bijective function from N to the set E of even numbers. Although E is a proper subset of N, both sets have the same cardinality. N does not have the same cardinality as its power set P(N): For every function f from N to P(N), the set T = {n∈N: n∉f(n)} disagrees with every set in the range of f, hence f cannot be surjective.

  6. Cardinal number - Wikipedia

    en.wikipedia.org/wiki/Cardinal_number

    The notion of cardinality, as now understood, was formulated by Georg Cantor, the originator of set theory, in 1874–1884. Cardinality can be used to compare an aspect of finite sets. For example, the sets {1,2,3} and {4,5,6} are not equal, but have the same cardinality, namely three.

  7. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    The example mapping f happens to correspond to the example enumeration s in the picture above. A generalized form of the diagonal argument was used by Cantor to prove Cantor's theorem: for every set S, the power set of S—that is, the set of all subsets of S (here written as P(S))—cannot be in bijection with S itself. This proof proceeds as ...

  8. Cantor's paradox - Wikipedia

    en.wikipedia.org/wiki/Cantor's_paradox

    Then (in the von Neumann formulation of cardinality) C is a set and therefore has a power set 2 C which, by Cantor's theorem, has cardinality strictly larger than C. Demonstrating a cardinality (namely that of 2 C) larger than C, which was assumed to be the greatest cardinal number, falsifies the definition of C. This contradiction establishes ...

  9. Inclusion–exclusion principle - Wikipedia

    en.wikipedia.org/wiki/Inclusion–exclusion...

    Generalizing the results of these examples gives the principle of inclusion–exclusion. To find the cardinality of the union of n sets: Include the cardinalities of the sets. Exclude the cardinalities of the pairwise intersections. Include the cardinalities of the triple-wise intersections. Exclude the cardinalities of the quadruple-wise ...